Citation: | Qian Sun, Yusi Hu, Saiyue Deng, Yanyu Xiong, Zhili Huang. A visualization pipeline for in vivo two-photon volumetric astrocytic calcium imaging[J]. The Journal of Biomedical Research, 2022, 36(5): 358-367. doi: 10.7555/JBR.36.20220099 |
[1] |
Zhou B, Zuo Y, Jiang R. Astrocyte morphology: diversity, plasticity, and role in neurological diseases[J]. CNS Neurosci Ther, 2019, 25(6): 665–673. doi: 10.1111/cns.13123
|
[2] |
Araque A, Carmignoto G, Haydon PG, et al. Gliotransmitters travel in time and space[J]. Neuron, 2014, 81(4): 728–739. doi: 10.1016/j.neuron.2014.02.007
|
[3] |
Chung WS, Allen NJ, Eroglu C. Astrocytes control synapse formation, function, and elimination[J]. Cold Spring Harb Perspect Biol, 2015, 7(9): a020370. doi: 10.1101/cshperspect.a020370
|
[4] |
Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information[J]. Trends Neurosci, 2009, 32(8): 421–431. doi: 10.1016/j.tins.2009.05.001
|
[5] |
Tran CHT, Peringod G, Gordon GR. Astrocytes integrate behavioral state and vascular signals during functional hyperemia[J]. Neuron, 2018, 100(5): 1133–1148.e3. doi: 10.1016/j.neuron.2018.09.045
|
[6] |
Otsu Y, Couchman K, Lyons DG, et al. Calcium dynamics in astrocyte processes during neurovascular coupling[J]. Nat Neurosci, 2015, 18(2): 210–218. doi: 10.1038/nn.3906
|
[7] |
Institoris Á, Rosenegger DG, Gordon GR. Arteriole dilation to synaptic activation that is sub-threshold to astrocyte endfoot Ca2+ transients[J]. J Cereb Blood Flow Metab, 2015, 35(9): 1411–1415. doi: 10.1038/jcbfm.2015.141
|
[8] |
Di Castro MA, Chuquet J, Liaudet N, et al. Local Ca2+ detection and modulation of synaptic release by astrocytes[J]. Nat Neurosci, 2011, 14(10): 1276–1284. doi: 10.1038/nn.2929
|
[9] |
Perea G, Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses[J]. Science, 2007, 317(5841): 1083–1086. doi: 10.1126/science.1144640
|
[10] |
Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave[J]. Nat Neurosci, 2016, 19(2): 182–189. doi: 10.1038/nn.4201
|
[11] |
Buskila Y, Bellot-Saez A, Morley JW. Generating brain waves, the power of astrocytes[J]. Front Neurosci, 2019, 13: 1125. doi: 10.3389/fnins.2019.01125
|
[12] |
Ding F, O'Donnell J, Thrane AS, et al. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice[J]. Cell Calcium, 2013, 54(6): 387–394. doi: 10.1016/j.ceca.2013.09.001
|
[13] |
Poskanzer KE, Yuste R. Astrocytic regulation of cortical UP states[J]. Proc Natl Acad Sci U S A, 2011, 108(45): 18453–18458. doi: 10.1073/pnas.1112378108
|
[14] |
Volterra A, Liaudet N, Savtchouk I. Astrocyte Ca2+ signalling: an unexpected complexity[J]. Nat Rev Neurosci, 2014, 15(5): 327–335. doi: 10.1038/nrn3725
|
[15] |
Shigetomi E, Bushong EA, Haustein MD, et al. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses[J]. J Gen Physiol, 2013, 141(5): 633–647. doi: 10.1085/jgp.201210949
|
[16] |
Ujita S, Sasaki T, Asada A, et al. cAMP-dependent calcium oscillations of astrocytes: an implication for pathology[J]. Cereb Cortex, 2017, 27(2): 1602–1614. doi: 10.1093/cercor/bhv310
|
[17] |
Nimmerjahn A, Bergles DE. Large-scale recording of astrocyte activity[J]. Curr Opin Neurobiol, 2015, 32: 95–106. doi: 10.1016/j.conb.2015.01.015
|
[18] |
Pacholko AG, Wotton CA, Bekar LK. Astrocytes-the ultimate effectors of long-range neuromodulatory networks?[J]. Front Cell Neurosci, 2020, 14: 581075. doi: 10.3389/fncel.2020.581075
|
[19] |
Kiyoshi CM, Du Y, Zhong S, et al. Syncytial isopotentiality: a system-wide electrical feature of astrocytic networks in the brain[J]. GLIA, 2018, 66(12): 2756–2769. doi: 10.1002/glia.23525
|
[20] |
Rusakov DA. Disentangling calcium-driven astrocyte physiology[J]. Nat Rev Neurosci, 2015, 16(4): 226–233. doi: 10.1038/nrn3878
|
[21] |
Ingiosi AM, Hayworth CR, Harvey DO, et al. A role for astroglial calcium in mammalian sleep and sleep regulation[J]. Curr Biol, 2020, 30(22): 4373–4383.e7. doi: 10.1016/j.cub.2020.08.052
|
[22] |
Bojarskaite L, Bjørnstad DM, Pettersen KH, et al. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep[J]. Nat Commun, 2020, 11(1): 3240. doi: 10.1038/s41467-020-17062-2
|
[23] |
Thrane AS, Rangroo Thrane V, Zeppenfeld D, et al. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex[J]. Proc Natl Acad Sci U S A, 2012, 109(46): 18974–18979. doi: 10.1073/pnas.1209448109
|
[24] |
Bindocci E, Savtchouk I, Liaudet N, et al. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology[J]. Science, 2017, 356(6339): eaai8185. doi: 10.1126/science.aai8185
|
[25] |
Hildebrandt IJ, Su H, Weber WA. Anesthesia and other considerations for in vivo imaging of small animals[J]. ILAR J, 2008, 49(1): 17–26. doi: 10.1093/ilar.49.1.17
|
[26] |
Savtchouk I, Carriero G, Volterra A. Studying axon-astrocyte functional interactions by 3D two-photon Ca2+ imaging: a practical guide to experiments and "big data" analysis[J]. Front Cell Neurosci, 2018, 12: 98. doi: 10.3389/fncel.2018.00098
|
[27] |
Sitdikova G, Zakharov A, Janackova S, et al. Isoflurane suppresses early cortical activity[J]. Ann Clin Transl Neurol, 2014, 1(1): 15–26. doi: 10.1002/acn3.16
|
[28] |
Sullender CT, Richards LM, He F, et al. Dynamics of isoflurane-induced vasodilation and blood flow of cerebral vasculature revealed by multi-exposure speckle imaging[J]. J Neurosci Methods, 2022, 366: 109434. doi: 10.1016/j.jneumeth.2021.109434
|
[29] |
Hudetz AG. General anesthesia and human brain connectivity[J]. Brain Connect, 2012, 2(6): 291–302. doi: 10.1089/brain.2012.0107
|
[30] |
Akerboom J, Chen TW, Wardill TJ, et al. Optimization of a GCaMP calcium indicator for neural activity imaging[J]. J Neurosci, 2012, 32(40): 13819–13840. doi: 10.1523/JNEUROSCI.2601-12.2012
|
[31] |
Rasmussen R, Nedergaard M, Petersen NC. Sulforhodamine 101, a widely used astrocyte marker, can induce cortical seizure-like activity at concentrations commonly used[J]. Sci Rep, 2016, 6(1): 30433. doi: 10.1038/srep30433
|
[32] |
Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology[J]. Brain Res Rev, 2010, 63(1–2): 2–10. doi: 10.1016/j.brainresrev.2009.12.001
|
[33] |
Lanjakornsiripan D, Pior BJ, Kawaguchi D, et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers[J]. Nat Commun, 2018, 9(1): 1623. doi: 10.1038/s41467-018-03940-3
|
[34] |
Pnevmatikakis EA, Soudry D, Gao Y, et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data[J]. Neuron, 2016, 89(2): 285–299. doi: 10.1016/j.neuron.2015.11.037
|
[35] |
Radstake FDW, Raaijmakers EAL, Luttge R, et al. CALIMA: the semi-automated open-source calcium imaging analyzer[J]. Comput Methods Programs Biomed, 2019, 179: 104991. doi: 10.1016/j.cmpb.2019.104991
|
[36] |
Giovannucci A, Friedrich J, Gunn P, et al. CaImAn an open source tool for scalable calcium imaging data analysis[J]. eLife, 2019, 8: e38173. doi: 10.7554/eLife.38173
|
[37] |
Wang Y, DelRosso NV, Vaidyanathan TV, et al. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology[J]. Nat Neurosci, 2019, 22(11): 1936–1944. doi: 10.1038/s41593-019-0492-2
|
[38] |
Scharwächter L, Schmitt FJ, Pallast N, et al. Network analysis of neuroimaging in mice[J]. Neuroimage, 2022, 253: 119110. doi: 10.1016/j.neuroimage.2022.119110
|
[39] |
Ding Z, Newton AT, Xu R, et al. Spatio-temporal correlation tensors reveal functional structure in human brain[J]. PLoS One, 2013, 8(12): e82107. doi: 10.1371/journal.pone.0082107
|
[40] |
Hashimoto Y, Ogata Y, Honda M, et al. Deep feature extraction for resting-state functional MRI by self-supervised learning and application to schizophrenia diagnosis[J]. Front Neurosci, 2021, 15: 696853. doi: 10.3389/fnins.2021.696853
|