Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
McKay Alexander, Burgio Gaetan. Harnessing CRISPR-Cas system diversity for gene editing technologies[J]. The Journal of Biomedical Research, 2021, 35(2): 91-106. doi: 10.7555/JBR.35.20200184
Citation: McKay Alexander, Burgio Gaetan. Harnessing CRISPR-Cas system diversity for gene editing technologies[J]. The Journal of Biomedical Research, 2021, 35(2): 91-106. doi: 10.7555/JBR.35.20200184

Harnessing CRISPR-Cas system diversity for gene editing technologies

doi: 10.7555/JBR.35.20200184
More Information
  • Corresponding author: Gaetan Burgio, Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia. Tel/Fax: +61-2-6125-9428/+61-2-6247-4823, E-mail: gaetan.burgio@anu.edu.au
  • Received: 2020-11-12
  • Revised: 2021-02-05
  • Accepted: 2021-02-19
  • Published: 2021-03-26
  • Issue Date: 2021-03-26
  • The discovery and utilization of RNA-guided surveillance complexes, such as CRISPR-Cas9, for sequence-specific DNA or RNA cleavage, has revolutionised the process of gene modification or knockdown. To optimise the use of this technology, an exploratory race has ensued to discover or develop new RNA-guided endonucleases with the most flexible sequence targeting requirements, coupled with high cleavage efficacy and specificity. Here we review the constraints of existing gene editing and assess the merits of exploiting the diversity of CRISPR-Cas effectors as a methodology for surmounting these limitations.


  • loading
  • [1]
    Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816–821. doi: 10.1126/science.1225829
    Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells using the CRISPR-Cas9 system[J]. Science, 2014, 343(6166): 80–84. doi: 10.1126/science.1246981
    Chen SD, Sanjana N, Zheng KJ, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis[J]. Cell, 2015, 160(6): 1246–1260. doi: 10.1016/j.cell.2015.02.038
    Wang HX, Song ZY, Lao YH, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide[J]. Proc Natl Acad Sci U S A, 2018, 115(19): 4903–4908. doi: 10.1073/pnas.1712963115
    Teixeira M, Py BF, Bosc C, et al. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing[J]. Sci Rep, 2018, 8(1): 474. doi: 10.1038/s41598-017-18826-5
    Del'Guidice T, Lepetit-Stoffaes JP, Bordeleau LJ, et al. Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells[J]. PLoS One, 2018, 13(4): e0195558. doi: 10.1371/journal.pone.0195558
    Takeuchi R, Choi M, Stoddard BL. Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization[J]. Proc Natl Acad Sci U S A, 2014, 111(11): 4061–4066. doi: 10.1073/pnas.1321030111
    Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action[J]. Biol Direct, 2006, 1(1): 7. doi: 10.1186/1745-6150-1-7
    Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709–1712. doi: 10.1126/science.1138140
    Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18(2): 67–83. doi: 10.1038/s41579-019-0299-x
    Hajizadeh Dastjerdi A, Newman A, Burgio G. The expanding class 2 CRISPR toolbox: diversity, applicability, and targeting drawbacks[J]. BioDrugs, 2019, 33(5): 503–513. doi: 10.1007/s40259-019-00369-y
    Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-cas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722–736. doi: 10.1038/nrmicro3569
    Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nat Rev Microbiol, 2017, 15(3): 169–182. doi: 10.1038/nrmicro.2016.184
    Yan WX, Chong SR, Zhang HB, et al. Cas13d is a compact RNA-targeting Type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein[J]. Mol Cell, 2018, 70(2): 327–339.e5. doi: 10.1016/j.molcel.2018.02.028
    Shmakov SA, Faure G, Makarova KS, et al. Systematic prediction of functionally linked genes in bacterial and archaeal genomes[J]. Nat Protoc, 2019, 14(10): 3013–3031. doi: 10.1038/s41596-019-0211-1
    Horvath P, Romero DA, Coûté-Monvoisin A, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus[J]. J Bacteriol, 2008, 190(4): 1401–1412. doi: 10.1128/JB.01415-07
    Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(3): 653–663. doi: 10.1099/mic.0.27437-0
    Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960–964. doi: 10.1126/science.1159689
    Liu L, Li XY, Ma J, et al. The molecular architecture for RNA-Guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714–726.e10. doi: 10.1016/j.cell.2017.06.050
    Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909): 1843–1845. doi: 10.1126/science.1165771
    Newman A, Starrs L, Burgio G. Cas9 cuts and consequences; detecting, predicting, and mitigating CRISPR/Cas9 on‐ and off‐target damage[J]. BioEssays, 2020, 42(9): 2000047. doi: 10.1002/bies.202000047
    Liang F, Han MG, Romanienko PJ, et al. Homology-directed repair is a major double-strand break repair pathway in mammalian cells[J]. Proc Natl Acad Sci U S A, 1998, 95(9): 5172–5177. doi: 10.1073/pnas.95.9.5172
    White MF, Allers T. DNA repair in the archaea—an emerging picture[J]. FEMS Microbiol Rev, 2018, 42(4): 514–526. doi: 10.1093/femsre/fuy020
    Ayora S, Carrasco B, Cárdenas PP, et al. Double-strand break repair in bacteria: a view from Bacillus subtilis[J]. FEMS Microbiol Rev, 2011, 35(6): 1055–1081. doi: 10.1111/j.1574-6976.2011.00272.x
    Wiktor J, van der Does M, Büller L, et al. Direct observation of end resection by RecBCD during double-stranded DNA break repair in vivo[J]. Nucleic Acids Res, 2018, 46(4): 1821–1833. doi: 10.1093/nar/gkx1290
    van der Heijden T, Modesti M, Hage S, et al. Homologous recombination in real time: DNA strand exchange by RecA[J]. Mol Cell, 2008, 30(4): 530–538. doi: 10.1016/j.molcel.2008.03.010
    Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819–823. doi: 10.1126/science.1231143
    Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823–826. doi: 10.1126/science.1232033
    Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining[J]. Transl Cancer Res, 2013, 2(3): 130–143. doi: 10.3978/j.issn.2218-676X.2013.04.02
    Shuman S, Glickman MS. Bacterial DNA repair by non-homologous end joining[J]. Nat Rev Microbiol, 2007, 5(11): 852–861. doi: 10.1038/nrmicro1768
    Chang HHY, Watanabe G, Gerodimos CA, et al. Different DNA end configurations dictate which NHEJ components are most important for joining efficiency[J]. J Biol Chem, 2016, 291(47): 24377–24389. doi: 10.1074/jbc.M116.752329
    Truong LN, Li YJ, Shi LZ, et al. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells[J]. Proc Natl Acad Sci U S A, 2013, 110(19): 7720–7725. doi: 10.1073/pnas.1213431110
    Burgio G, Teboul L. Anticipating and identifying collateral damage in genome editing[J]. Trends Genet, 2020, 36(12): 905–914. doi: 10.1016/j.tig.2020.09.011
    Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-cas systems[J]. Mol Cell, 2015, 60(3): 385–397. doi: 10.1016/j.molcel.2015.10.008
    Burstein D, Harrington LB, Strutt SC, et al. New CRISPR–Cas systems from uncultivated microbes[J]. Nature, 2016, 542(7640): 237–241. doi: 10.1038/nature21059
    Yan WX, Hunnewell P, Alfonse L, et al. Functionally diverse type V CRISPR-Cas systems[J]. Science, 2019, 363(6422): 88–91. doi: 10.1126/science.aav7271
    Smargon AA, Cox DBT, Pyzocha NK, et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28[J]. Mol Cell, 2017, 65(4): 618–630.e7. doi: 10.1016/j.molcel.2016.12.023
    Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors[J]. Cell, 2018, 173(3): 665–676.e14. doi: 10.1016/j.cell.2018.02.033
    Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839–842. doi: 10.1126/science.aav4294
    Shmakov SA, Makarova KS, Wolf YI, et al. Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis[J]. Proc Natl Acad Sci U S A, 2018, 115(23): E5307–E5316. doi: 10.1073/pnas.1803440115
    Levy A, Goren MG, Yosef I, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA[J]. Nature, 2015, 520(7548): 505–510. doi: 10.1038/nature14302
    Radovčić M, Killelea T, Savitskaya E, et al. CRISPR–Cas adaptation in Escherichia coli requires RecBCD helicase but not nuclease activity, is independent of homologous recombination, and is antagonized by 5′ ssDNA exonucleases[J]. Nucleic Acids Res, 2018, 46(19): 10173–10183. doi: 10.1093/nar/gky799
    Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602–607. doi: 10.1038/nature09886
    Al-Shayeb B, Sachdeva R, Chen LX, et al. Clades of huge phages from across Earth's ecosystems[J]. Nature, 2020, 578(7795): 425–431. doi: 10.1038/s41586-020-2007-4
    Chatterjee P, Jakimo N, Jacobson JM. Minimal PAM specificity of a highly similar SpCas9 ortholog[J]. Sci Adv, 2018, 4(10): eaau0766. doi: 10.1126/sciadv.aau0766
    Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546): 186–191. doi: 10.1038/nature14299
    Sampson TR, Saroj SD, Llewellyn AC, et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence[J]. Nature, 2013, 497(7448): 254–257. doi: 10.1038/nature12048
    Dugar G, Leenay RT, Eisenbart SK, et al. CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9[J]. Mol Cell, 2018, 69(5): 893–905.e7. doi: 10.1016/j.molcel.2018.01.032
    Yamada M, Watanabe Y, Gootenberg JS, et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Mol Cell, 2017, 65(6): 1109–1121.e3. doi: 10.1016/j.molcel.2017.02.007
    Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets[J]. Nat Biotechnol, 2017, 35(11): 1026–1028. doi: 10.1038/nbt.3988
    Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215(3): 403–410. doi: 10.1016/S0022-2836(05)80360-2
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods, 2014, 12(1): 59–60. doi: 10.15496/publikation-1176
    Zhang B, Ye YM, Ye WW, et al. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d[J]. Nat Commun, 2019, 10(1): 2544. doi: 10.1038/s41467-019-10507-3
    Jore MM, Lundgren M, van Duijn E, et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade[J]. Nat Struct Mol Biol, 2011, 18(5): 529–536. doi: 10.1038/nsmb.2019
    Sinkunas T, Gasiunas G, Fremaux C, et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system[J]. EMBO J, 2011, 30(7): 1335–1342. doi: 10.1038/emboj.2011.41
    Morisaka H, Yoshimi K, Okuzaki Y, et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells[J]. Nat Commun, 2019, 10(1): 5302. doi: 10.1038/s41467-019-13226-x
    Dolan AE, Hou ZG, Xiao Yb, et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-cas[J]. Mol Cell, 2019, 74(5): 936–950.e5. doi: 10.1016/j.molcel.2019.03.014
    Peters JE, Makarova KS, Shmakov S, et al. Recruitment of CRISPR-Cas systems by Tn7-like transposons[J]. Proc Natl Acad Sci U S A, 2017, 114(35): E7358–E7366. doi: 10.1073/pnas.1709035114
    Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764): 219–225. doi: 10.1038/s41586-019-1323-z
    Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448): 48–53. doi: 10.1126/science.aax9181
    Mogila I, Kazlauskiene M, Valinskyte S, et al. Genetic dissection of the type III-A CRISPR-Cas system csm complex reveals roles of individual subunits[J]. Cell Rep, 2019, 26(10): 2753–2765.e4. doi: 10.1016/j.celrep.2019.02.029
    Li YJ, Pan SF, Zhang Y, et al. Harnessing Type I and Type III CRISPR-Cas systems for genome editing[J]. Nucleic Acids Res, 2016, 44(4): e34. doi: 10.1093/nar/gkv1044
    Rahman K, Jamal M, Chen X, et al. Reprogramming the endogenous type III-A CRISPR-Cas system for genome editing, RNA interference and CRISPRi screening in Mycobacterium tuberculosis[EB/OL]. [2020-03-09]. https://www.biorxiv.org/content/10.1101/2020.03.09.983494v1.full.pdf+html.
    Niewoehner O, Garcia-Doval C, Rostøl JT, et al. Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers[J]. Nature, 2017, 548(7669): 543–548. doi: 10.1038/nature23467
    Lau RK, Ye QZ, Birkholz EA, et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity[J]. Mol Cell, 2020, 77(4): 723–733.e6. doi: 10.1016/j.molcel.2019.12.010
    Kazlauskiene M, Kostiuk G, Venclovas Č, et al. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems[J]. Science, 2017, 357(6351): 605–609. doi: 10.1126/science.aao0100
    Kazlauskiene M, Tamulaitis G, Kostiuk G, et al. Spatiotemporal control of Type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition[J]. Mol Cell, 2016, 62(2): 295–306. doi: 10.1016/j.molcel.2016.03.024
    Han WY, Li YJ, Deng L, et al. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction[J]. Nucleic Acids Res, 2017, 45(4): 1983–1993. doi: 10.1093/nar/gkw1274
    Elmore JR, Sheppard NF, Ramia N, et al. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system[J]. Genes Dev, 2016, 30(4): 447–459. doi: 10.1101/gad.272153.115
    Smalakyte D, Kazlauskiene M, Havelund JF, et al. Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains[J]. Nucleic Acids Res, 2020, 48(16): 9204–9217. doi: 10.1093/nar/gkaa634
    Estrella MA, Kuo FT, Bailey S. RNA-activated DNA cleavage by the Type III-B CRISPR–Cas effector complex[J]. Genes Dev, 2016, 30(4): 460–470. doi: 10.1101/gad.273722.115
    Liu TY, Liu JJ, Aditham AJ, et al. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble[J]. Nat Commun, 2019, 10(1): 3001. doi: 10.1038/s41467-019-10780-2
    Chou-Zheng L, Hatoum-Aslan A. A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity[J]. eLife, 2019, 8: e45393. doi: 10.7554/eLife.45393
    Crowley VM, Catching A, Taylor HN, et al. A type IV-A CRISPR-Cas system in pseudomonas aeruginosa mediates RNA-guided plasmid interference in vivo[J]. CRISPR J, 2019, 2(6): 434–440. doi: 10.1089/crispr.2019.0048
    Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, et al. Type IV CRISPR–Cas systems are highly diverse and involved in competition between plasmids[J]. Nucleic Acids Res, 2020, 48(4): 2000–2012. doi: 10.1093/nar/gkz1197
    Jiang WZ, Zhou HB, Bi HH, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice[J]. Nucleic Acids Res, 2013, 41(20): e188. doi: 10.1093/nar/gkt780
    Ma XL, Zhu QL, Chen YL, et al. CRISPR/Cas9 Platforms for genome editing in plants: developments and applications[J]. Mol Plant, 2016, 9(7): 961–974. doi: 10.1016/j.molp.2016.04.009
    Raper AT, Stephenson AA, Suo ZC. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9[J]. J Am Chem Soc, 2018, 140(8): 2971–2984. doi: 10.1021/jacs.7b13047
    Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436–439. doi: 10.1126/science.aar6245
    Gasiunas G, Young JK, Karvelis T, et al. A catalogue of biochemically diverse CRISPR-Cas9 orthologs[J]. Nat Commun, 2020, 11(1): 5512. doi: 10.1038/s41467-020-19344-1
    Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nat Commun, 2017, 8(1): 14500. doi: 10.1038/ncomms14500
    Adli M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018, 9(1): 1911. doi: 10.1038/s41467-018-04252-2
    Hou ZG, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis[J]. Proc Natl Acad Sci U S A, 2013, 110(39): 15644–15649. doi: 10.1073/pnas.1313587110
    Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109(39): E2579–E2586. doi: 10.1073/pnas.1208507109
    Globyte V, Lee SH, Bae T, et al. CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion[J]. EMBO J, 2019, 38(4): e99466. doi: 10.15252/embj.201899466
    Amrani N, Gao XD, Liu PP, et al. NmeCas9 is an intrinsically high-fidelity genome-editing platform[J]. Genome Biol, 2018, 19(1): 214. doi: 10.1186/s13059-018-1591-1
    Tang YY, Fu Y. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing[J]. Cell Biosci, 2018, 8(1): 59. doi: 10.1186/s13578-018-0255-x
    Li SY, Cheng QX, Liu JK, et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA[J]. Cell Res, 2018, 28(4): 491–493. doi: 10.1038/s41422-018-0022-x
    Zhang LJ, Sun RR, Yang MY, et al. Conformational dynamics and cleavage sites of Cas12a are modulated by complementarity between crRNA and DNA[J]. iScience, 2019, 19: 492–503. doi: 10.1016/j.isci.2019.08.005
    Swarts DC, Jinek M. Mechanistic insights into the cis- and trans-acting DNase activities of cas12a[J]. Mol Cell, 2019, 73(3): 589–600.e4. doi: 10.1016/j.molcel.2018.11.021
    Swarts DC, van der Oost J, Jinek M. Structural basis for guide RNA processing and seed-dependent DNA Targeting by CRISPR-Cas12a[J]. Mol Cell, 2017, 66(2): 221–233.e4. doi: 10.1016/j.molcel.2017.03.016
    Cofsky JC, Karandur D, Huang CJ, et al. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks[J]. eLife, 2020, 9: e55143. doi: 10.7554/eLife.55143
    Karvelis T, Bigelyte G, Young JK, et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage[J]. Nucleic Acids Res, 2020, 48(9): 5016–5023. doi: 10.1093/nar/gkaa208
    Pausch P, Al-Shayeb B, Bisom-Rapp E, et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor[J]. Science, 2020, 369(6501): 333–337. doi: 10.1126/science.abb1400
    Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system[J]. Cell, 2015, 163(3): 759–771. doi: 10.1016/j.cell.2015.09.038
    Rubin BE, Diamond S, Alexander BFC, et al. Targeted genome editing of bacteria within microbial communities[EB/OL]. [2020-07-21]. https://www.biorxiv.org/content/10.1101/2020.07.17.209189v2.
    Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149–157. doi: 10.1038/s41586-019-1711-4
    Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281–2308. doi: 10.1038/nprot.2013.143
    Teng F, Li J, Cui TT, et al. Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds[J]. Genome Biol, 2019, 20(1): 15. doi: 10.1186/s13059-019-1620-8
    Kappel S, Matthess Y, Kaufmann M, Strebhardt K. Silencing of mammalian genes by tetracycline-inducible shRNA expression[J]. Nat Protoc, 2007, 2(12): 3257–3269. doi: 10.1038/nprot.2007.458
    Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. doi: 10.1126/science.aaf5573
    Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37: 67–78. doi: 10.1016/j.mib.2017.05.008
    Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR–Cas13[J]. Nature, 2017, 550(7675): 280–284. doi: 10.1038/nature24049
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (2032) PDF downloads(182) Cited by()
    Proportional views
    Relative Articles


    DownLoad:  Full-Size Img  PowerPoint