Citation: | Desaulniers Amy T., Cederberg Rebecca A., Carreiro Elizabeth P., Gurumurthy Channabasavaiah B., White Brett R.. A transgenic pig model expressing a CMV-ZsGreen1 reporter across an extensive array of tissues[J]. The Journal of Biomedical Research, 2021, 35(2): 163-173. doi: 10.7555/JBR.34.20200111 |
[1] |
Walters EM, Wells KD, Bryda EC, et al. Swine models, genomic tools and services to enhance our understanding of human health and diseases[J]. Lab Anim (NY), 2017, 46(4): 167–172. doi: 10.1038/laban.1215
|
[2] |
Desaulniers AT, Cederberg RA, Mills GA, et al. Production of a gonadotropin-releasing hormone 2 receptor knockdown (GNRHR2 KD) swine line[J]. Transgenic Res, 2017, 26(4): 567–575. doi: 10.1007/s11248-017-0023-4
|
[3] |
Bleck GT, White BR, Miller DJ, et al. Production of bovine α-lactalbumin in the milk of transgenic pigs[J]. J Anim Sci, 1998, 76(12): 3072–3078. doi: 10.2527/1998.76123072x
|
[4] |
Whitworth KM, Rowland RR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34(1): 20–22. doi: 10.1038/nbt.3434
|
[5] |
Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species[J]. Nat Biotechnol, 1999, 17(10): 969–973. doi: 10.1038/13657
|
[6] |
Day RN, Davidson MW. The fluorescent protein palette: tools for cellular imaging[J]. Chem Soc Rev, 2009, 38(10): 2887–2921. doi: 10.1039/b901966a
|
[7] |
Nakamura Y, Ishii J, Kondo A. Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen) for human G-protein-coupled receptor signaling in microbial yeast cells[J]. PLoS One, 2013, 8(12): e82237. doi: 10.1371/journal.pone.0082237
|
[8] |
Wouters M, Smans K, Vanderwinden JM. WZsGreen/+: a new green fluorescent protein knock-in mouse model for the study of KIT-expressing cells in gut and cerebellum[J]. Physiol Genomics, 2005, 22(3): 412–421. doi: 10.1152/physiolgenomics.00105.2005
|
[9] |
Boshart M, Weber F, Jahn G, et al. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus[J]. Cell, 1985, 41(2): 521–530. doi: 10.1016/S0092-8674(85)80025-8
|
[10] |
Brown AJ, Sweeney B, Mainwaring DO, et al. NF-κB, CRE and YY1 elements are key functional regulators of CMV promoter-driven transient gene expression in CHO cells[J]. Biotechnol J, 2015, 10(7): 1019–1028. doi: 10.1002/biot.201400744
|
[11] |
Mella-Alvarado V, Gautier A, Le Gac F, et al. Tissue and cell-specific transcriptional activity of the human cytomegalovirus immediate early gene promoter (UL123) in zebrafish[J]. Gene Expr Patterns, 2013, 13(3-4): 91–103. doi: 10.1016/j.gep.2013.01.003
|
[12] |
Liu CX, Wang LQ, Li WR, et al. Highly efficient generation of transgenic sheep by lentivirus accompanying the alteration of methylation status[J]. PLoS One, 2013, 8(1): e54614. doi: 10.1371/journal.pone.0054614
|
[13] |
Duan B, Cheng L, Gao Y, et al. Silencing of fat-1 transgene expression in sheep may result from hypermethylation of its driven cytomegalovirus (CMV) promoter[J]. Theriogenology, 2012, 78(4): 793–802. doi: 10.1016/j.theriogenology.2012.03.027
|
[14] |
Dyck MK, Ouellet M, Gagné M, et al. Testes-specific transgene expression in insulin-like growth factor-I transgenic mice[J]. Mol Reprod Dev, 1999, 54(1): 32–42. doi: 10.1002/(SICI)1098-2795(199909)54:1<32::AID-MRD5>3.0.CO;2-U
|
[15] |
Villuendas G, Gutiérrez-Adán A, Jiménez A, et al. CMV-driven expression of green fluorescent protein (GFP) in male germ cells of transgenic mice and its effect on fertility[J]. Int J Androl, 2001, 24(5): 300–305. doi: 10.1046/j.1365-2605.2001.00302.x
|
[16] |
Charreau B, Tesson L, Buscail J, et al. Analysis of human CD59 tissue expression directed by the CMV-IE-1 promoter in transgenic rats[J]. Transgenic Res, 1996, 5(6): 443–450. doi: 10.1007/BF01980209
|
[17] |
McGrew MJ, Sherman A, Ellard FM, et al. Efficient production of germline transgenic chickens using lentiviral vectors[J]. EMBO Rep, 2004, 5(7): 728–733. doi: 10.1038/sj.embor.7400171
|
[18] |
Vasey DB, Lillico SG, Sang HM, et al. CMV enhancer-promoter is preferentially active in exocrine cells in vivo[J]. Transgenic Res, 2009, 18(2): 309–314. doi: 10.1007/s11248-008-9235-y
|
[19] |
Whitelaw CBA, Radcliffe PA, Ritchie WA, et al. Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector[J]. FEBS Lett, 2004, 571(1-3): 233–236. doi: 10.1016/j.febslet.2004.06.076
|
[20] |
Hsu WL, Johnson RK. Analysis of 28 generations of selection for reproduction, growth, and carcass traits in swine[J]. J Anim Sci, 2014, 92(11): 4806–4822. doi: 10.2527/jas.2014-8125
|
[21] |
Desaulniers AT, Cederberg RA, Mills GA, et al. LH-independent testosterone secretion is mediated by the interaction between GnRH2 and its receptor within porcine testes[J]. Biol Reprod, 2015, 93(2): 45. doi: 10.1095/biolreprod.115.128082
|
[22] |
Eaton SL, Roche SL, Llavero Hurtado M, et al. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting[J]. PLoS One, 2013, 8(8): e72457. doi: 10.1371/journal.pone.0072457
|
[23] |
Furth PA, Hennighausen L, Baker C, et al. The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1 enhancer/promoter in transgenic mice[J]. Nucleic Acids Res, 1991, 19(22): 6205–6208. doi: 10.1093/nar/19.22.6205
|
[24] |
Dobie KW, Lee M, Fantes JA, et al. Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus[J]. Proc Natl Acad Sci U S A, 1996, 93(13): 6659–6664. doi: 10.1073/pnas.93.13.6659
|
[25] |
Garrick D, Fiering S, Martin DI, et al. Repeat-induced gene silencing in mammals[J]. Nat Genet, 1998, 18(1): 56–59. doi: 10.1038/ng0198-56
|
[26] |
Chang SP, Opsahl ML, Whitelaw CB, et al. Relative transgene expression frequencies in homozygous versus hemizygous transgenic mice[J]. Transgenic Res, 2013, 22(6): 1143–1154. doi: 10.1007/s11248-013-9732-5
|
[27] |
Isern E, Gustems M, Messerle M, et al. The activator protein 1 binding motifs within the human cytomegalovirus major immediate-early enhancer are functionally redundant and act in a cooperative manner with the NF-κB sites during acute infection[J]. J Virol, 2011, 85(4): 1732–1746. doi: 10.1128/JVI.01713-10
|
[28] |
Rodova M, Jayini R, Singasani R, et al. CMV promoter is repressed by p53 and activated by JNK pathway[J]. Plasmid, 2013, 69(3): 223–230. doi: 10.1016/j.plasmid.2013.01.004
|
[29] |
Landolfo S, Gariglio M, Gribaudo G, et al. The human cytomegalovirus[J]. Pharmacol Ther, 2003, 98(3): 269–297. doi: 10.1016/S0163-7258(03)00034-2
|
[30] |
Pierzynowski SG, Weström BR, Erlanson-Albertsson C, et al. Induction of exocrine pancreas maturation at weaning in young developing pigs[J]. J Pediatr Gastroenterol Nutr, 1993, 16(3): 287–293. doi: 10.1097/00005176-199304000-00012
|
[31] |
Opsahl ML, Springbett A, Lathe R, et al. Mono-allelic expression of variegating transgene locus in the mouse[J]. Transgenic Res, 2003, 12(6): 661–669. doi: 10.1023/B:TRAG.0000005166.74030.ba
|
[32] |
Velten J, Cakir C, Youn E, et al. Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct[J]. PLoS One, 2012, 7(2): e30141. doi: 10.1371/journal.pone.0030141
|
[33] |
Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants[J]. Trends Genet, 2006, 22(5): 268–280. doi: 10.1016/j.tig.2006.03.003
|
[34] |
Takahashi G, Gurumurthy CB, Wada K, et al. GONAD: genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice[J]. Sci Rep, 2015, 5: 11406. doi: 10.1038/srep11406
|
[35] |
Quadros RM, Miura H, Harms DW, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins[J]. Genome Biol, 2017, 18(1): 92. doi: 10.1186/s13059-017-1220-4
|