Citation: | Xing Ming, Wang Na, Zeng Hanyi, Zhang Jun. α-ketoglutarate promotes the specialization of primordial germ cell-like cells through regulating epigenetic reprogramming[J]. The Journal of Biomedical Research, 2021, 35(1): 36-46. doi: 10.7555/JBR.34.20190160 |
[1] |
Saitou M, Yamaji M. Primordial germ cells in mice[J]. Cold Spring Harb Perspect Biol,2012, 4(11): a008375.
|
[2] |
Ohinata Y, Payer B, O'Carroll D, et al. Blimp1 is a critical determinant of the germ cell lineage in mice[J]. Nature,2005, 436(7048): 207–213. doi: 10.1038/nature03813
|
[3] |
Yamaji M, Seki Y, Kurimoto K, et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice[J]. Nat Genet,2008, 40(8): 1016–1022. doi: 10.1038/ng.186
|
[4] |
Schäfer S, Anschlag J, Nettersheim D, et al. The role of BLIMP1 and its putative downstream target TFAP2C in germ cell development and germ cell tumours[J]. Int J Androl,2011, 34(4pt2): e152–e159. doi: 10.1111/j.1365-2605.2011.01167.x
|
[5] |
Aramaki S, Hayashi K, Kurimoto K, et al. A Mesodermal Factor, T, Specifies mouse germ cell fate by directly activating germline determinants[J]. Dev Cell,2013, 27(5): 516–529. doi: 10.1016/j.devcel.2013.11.001
|
[6] |
De Miguel MP, Cheng LZ, Holland EC, et al. Dissection of the c-Kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer[J].Proc Natl Acad Sci USA,2002, 99(16): 10458–10463. doi: 10.1073/pnas.122249399
|
[7] |
Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells[J]. Development,2012, 139(1): 15–31. doi: 10.1242/dev.050849
|
[8] |
Hayashi K, Ohta H, Kurimoto K, et al. Reconstitution of the Mouse Germ Cell specification pathway in culture by pluripotent stem cells[J]. Cell,2011, 146(4): 519–532. doi: 10.1016/j.cell.2011.06.052
|
[9] |
Hayashi K, Saitou M. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells[J]. Nat Protoc,2013, 8(8): 1513–1524. doi: 10.1038/nprot.2013.090
|
[10] |
Saitou M, Miyauchi H. Gametogenesis from pluripotent stem cells[J]. Cell Stem Cell,2016, 18(6): 721–735. doi: 10.1016/j.stem.2016.05.001
|
[11] |
Zhou Q, Wang M, Yuan Y, et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro[J]. Cell Stem Cell,2016, 18(3): 330–340. doi: 10.1016/j.stem.2016.01.017
|
[12] |
Kurimoto K, Yabuta Y, Hayashi K, et al. Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells[J]. Cell Stem Cell,2015, 16(5): 517–532. doi: 10.1016/j.stem.2015.03.002
|
[13] |
Sharma U, Rando OJ. Metabolic inputs into the epigenome[J]. Cell Metab,2017, 25(3): 544–558. doi: 10.1016/j.cmet.2017.02.003
|
[14] |
Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy[J]. Nat Rev Cancer,2016, 16(10): 619–634. doi: 10.1038/nrc.2016.71
|
[15] |
Klysz D, Tai XG, Robert PA, et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation[J]. Sci Signal,2015, 8(396): ra97. doi: 10.1126/scisignal.aab2610
|
[16] |
Yang QY, Liang XW, Sun XF, et al. AMPK/α-Ketoglutarate axis dynamically mediates DNA Demethylation in the Prdm16 promoter and brown Adipogenesis[J]. Cell Metab,2016, 24(4): 542–554. doi: 10.1016/j.cmet.2016.08.010
|
[17] |
Carey BW, Finley LWS, Cross JR, et al. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells[J]. Nature,2015, 518(7539): 413–416. doi: 10.1038/nature13981
|
[18] |
Park S, Safi R, Liu XJ, et al. Inhibition of ERRα prevents mitochondrial pyruvate uptake exposing NADPH-generating pathways as targetable vulnerabilities in breast cancer[J]. Cell Rep,2019, 27(12): 3587–3601. doi: 10.1016/j.celrep.2019.05.066
|
[19] |
TeSlaa T, Chaikovsky AC, Lipchina I, et al. α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells[J]. Cell Metab,2016, 24(3): 485–493. doi: 10.1016/j.cmet.2016.07.002
|
[20] |
Hofstetter C, Kampka JM, Huppertz S, et al. Inhibition of KDM6 activity during murine ESC differentiation induces DNA Damage[J]. J Cell Sci,2016, 129(4): 788–803. doi: 10.1242/jcs.175174
|
[21] |
Qiu YP, Cai GX, SU MM, et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS[J]. J Proteome Res,2009, 8(10): 4844–4850. doi: 10.1021/pr9004162
|
[22] |
Zielke HR, Zielke CL, Ozand PT. Glutamine: a major energy source for cultured mammalian cells[J]. Fed Proc,1984, 43(1): 121–125.
|
[23] |
Song M, Kim SH, Im CY, et al. Recent development of small molecule glutaminase inhibitors[J]. Curr Top Med Chem,2018, 18(6): 432–443. doi: 10.2174/1568026618666180525100830
|
[24] |
Agger K, Cloos PAC, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development[J]. Nature,2007, 449(7163): 731–734. doi: 10.1038/nature06145
|
[25] |
Yan NN, Xu L, Wu XB, et al. GSKJ4, an H3K27me3 demethylase inhibitor, effectively suppresses the breast cancer stem cells[J]. Exp Cell Res,2017, 359(2): 405–414. doi: 10.1016/j.yexcr.2017.08.024
|
[26] |
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial Reactive Oxygen Species (ROS) and ROS-induced ROS release[J]. Physiol Rev,2014, 94(3): 909–950. doi: 10.1152/physrev.00026.2013
|
[27] |
Zha ZM, Wang JH, Li SL, et al. Pitavastatin attenuates AGEs-induced mitophagy via inhibition of ROS generation in the mitochondria of cardiomyocytes[J]. J Biomed Res,2018, 32(4): 281–287.
|
[28] |
Guo Z, Zhou BR, Li W, et al. Hydrogen-rich saline protects against ultraviolet B radiation injury in rats[J]. J Biomed Res,2012, 26(5): 365–371. doi: 10.7555/JBR.26.20110037
|
[29] |
Zhang R, Kang KA, Kim KC, et al. Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells[J]. Gene,2013, 524(2): 214–219. doi: 10.1016/j.gene.2013.04.024
|
[30] |
Periyasamy K, Sivabalan V, Baskaran K, et al. Cellular metabolic energy modulation by tangeretin in 7,12-dimethylbenz(a) anthracene-induced breast cancer[J]. J Biomed Res,2016, 30(2): 134–141.
|
[31] |
Etchegaray JP, Mostoslavsky R. Interplay between metabolism and epigenetics: A nuclear adaptation to environmental changes[J]. Mol Cell,2016, 62(5): 695–711. doi: 10.1016/j.molcel.2016.05.029
|
[32] |
Chisolm DA, Weinmann AS. Connections between metabolism and epigenetics in programming cellular differentiation[J]. Annu Rev Immunol,2018, 36: 221–246. doi: 10.1146/annurev-immunol-042617-053127
|
[33] |
Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity[J]. Ann N Y Acad Sci,2016, 1363(1): 91–98. doi: 10.1111/nyas.12956
|
[34] |
Sivanand S, Viney I, Wellen KE. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation[J]. Trends Biochem Sci,2018, 43(1): 61–74. doi: 10.1016/j.tibs.2017.11.004
|
[35] |
Hwang IY, Kwak S, Lee S, et al. Psat1-dependent fluctuations in α-ketoglutarate affect the timing of ESC differentiation[J]. Cell Metab,2016, 24(3): 494–501. doi: 10.1016/j.cmet.2016.06.014
|
![]() |
![]() |