• ISSN 1674-8301
  • CN 32-1810/R
Volume 33 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
Park Gi Young, Kwon Dong Rak, Moon Yong Suk. Low-intensity microcurrent therapy promotes regeneration of atrophied calf muscles in immobilized rabbits[J]. The Journal of Biomedical Research, 2019, 33(1): 30-37. doi: 10.7555/JBR.32.20180056
Citation: Park Gi Young, Kwon Dong Rak, Moon Yong Suk. Low-intensity microcurrent therapy promotes regeneration of atrophied calf muscles in immobilized rabbits[J]. The Journal of Biomedical Research, 2019, 33(1): 30-37. doi: 10.7555/JBR.32.20180056

Low-intensity microcurrent therapy promotes regeneration of atrophied calf muscles in immobilized rabbits

doi: 10.7555/JBR.32.20180056
More Information
  • Corresponding author: Dong Rak Kwon, M.D., Ph.D., Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-Gu, Daegu 42472, Republic of Korea. Tel/Fax:+ 82-53-650-3627/+ 82-53-622-4687, E-mail: coolkwon@cu.ac.kr or dongrakkwon@hotmail.com
  • Received: 2018-06-14
  • Revised: 2018-06-25
  • Accepted: 2018-07-05
  • Published: 2018-08-20
  • Issue Date: 2019-01-01
  • The purpose of this study was to investigate the intensity-specific regenerative effects of microcurrent therapy on gastrocnemius muscle atrophy induced by cast-immobilization in rabbits. Fifteen rabbits were randomly allocated to 3 groups after cast removal: cast-immobilization and sham microcurrent therapy for 2 weeks (group 1); castimmobilization and microcurrent therapy (25 μA) for 2 weeks (group 2); cast-immobilization and microcurrent therapy (5, 000 μA) for 2 weeks (group 3). Clinical parameters [calf circumference, compound muscle action potential (CMAP) of the tibial nerve, thickness of gastrocnemius muscle], cross sectional area of gastrocnemius muscle fibres, and immunohistochemistry was evaluated. The clinical parameters representing mean atrophic changes in group 2 were significantly lower than those in group 3. The cross sectional area of the gastrocnemius muscle fibres and immunohistochemical parameters in group 2 were significantly greater than those in group 3. The results showed that low-intensity microcurrent therapy can more effectively promote regeneration in atrophied gastrocnemius muscle than high-intensity microcurrent therapy.

     

  • loading
  • [1]
    Barreiro E, Bustamante V, Cejudo P, et al. Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease[J]. Arch Bronconeumol, 2015, 51(8): 384-395. doi: 10.1016/j.arbres.2015.04.011
    [2]
    Chacon-Cabrera A, Gea J, Barreiro E. Short- and long-term hindlimb immobilization and reloading: Profile of epigenetic events in gastrocnemius[J]. J Cell Physiol, 2017, 232(6): 1415- 1427. doi: 10.1002/jcp.25635
    [3]
    Gossman MR, Rose SJ, Sahrmann SA, et al. Length and circumference measurements in one-joint and multijoint muscles in rabbits after immobilization[J]. Phys Ther, 1986, 66(4): 516-520. doi: 10.1093/ptj/66.4.516
    [4]
    Michelsson JE, Aho HJ, Kalimo H, et al. Severe degeneration of rabbit vastus intermedius muscle immobilized in shortened position[J]. APMIS, 1990, 98(4): 336-344. http://europepmc.org/abstract/MED/2354053
    [5]
    Edgerton VR, Roy RR, Allen DL, et al. Adaptations in skeletal muscle disuse or decreased-use atrophy[J]. Am J Phys Med Rehabil, 2002, 81(11 Suppl): S127-S147. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028596988/
    [6]
    Thomason DB, Booth FW. Atrophy of the soleus muscle by hindlimb unweighting[J]. J Appl Physiol (1985), 1990, 68(1): 1-12. doi: 10.1152/jappl.1990.68.1.1
    [7]
    Armand AS, Laziz I, Djeghloul D, et al. Apoptosis-inducing factor regulates skeletal muscle progenitor cell number and muscle phenotype[J]. PLoS One, 2011, 6(11): e27283. doi: 10.1371/journal.pone.0027283
    [8]
    Best TM, Hunter KD. Muscle injury and repair[J]. Phys Med Rehabil Clin N Am, 2000, 11(2): 251-266. doi: 10.1016/S1047-9651(18)30128-1
    [9]
    Grounds MD. Muscle regeneration: molecular aspects and therapeutic implications[J]. Curr Opin Neurol, 1999, 12(5): 535-543. doi: 10.1097/00019052-199910000-00007
    [10]
    Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair[J]. J Anat, 2003, 203(1): 89-99. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1571137
    [11]
    Morioka S, Goto K, Kojima A, et al. Functional overloading facilitates the regeneration of injured soleus muscles in mice[J]. J Physiol Sci, 2008, 58(6): 397-404. doi: 10.2170/physiolsci.RP004008
    [12]
    Matsuba Y, Goto K, Morioka S, et al. Gravitational unloading inhibits the regenerative potential of atrophied soleus muscle in mice[J]. Acta Physiol (Oxf), 2009, 196(3): 329-339. doi: 10.1111/aps.2009.196.issue-3
    [13]
    Moon YS, Kwon DR, Lee YJ. Therapeutic effect of microcurrent on calf muscle atrophy in immobilised rabbit[J]. Muscle Nerve, 2018, 58(2): 270-276. doi: 10.1002/mus.v58.2
    [14]
    Cheng N, Van Hoof H, Bockx E, et al. The effects of electric currents on ATP generation, protein synthesis, and membrane transport of rat skin[J]. Clin Orthop Relat Res, 1982, (171): 264-272. http://europepmc.org/abstract/MED/7140077
    [15]
    Fujiya H, Ogura Y, Ohno Y, et al. Microcurrent electrical neuromuscular stimulation facilitates regeneration of injured skeletal muscle in mice[J]. J Sports Sci Med, 2015, 14(2): 297- 303. http://pubmedcentralcanada.ca/pmcc/articles/pmid/25983578
    [16]
    Zickri MB. Possible local stem cells activation by microcurrent application in experimentally injured soleus muscle[J]. Int J Stem Cells, 2014, 7(2): 79-86. doi: 10.15283/ijsc.2014.7.2.79
    [17]
    Dirks ML, Wall BT, Snijders T, et al. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol (Oxf), 2014, 210(3): 628- 641. doi: 10.1111/apha.12200
    [18]
    Dirks ML, Hansen D, Van Assche A, et al. Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond), 2015, 128(6): 357-365. doi: 10.1042/CS20140447
    [19]
    Kauhanen S, von Boguslawsky K, Michelsson JE, et al. Satellite cell proliferation in rabbit hindlimb muscle following immobilization and remobilization: an immunohistochemical study using MIB 1 antibody[J]. Acta Neuropathol, 1998, 95(2): 165-170. doi: 10.1007/s004010050782
    [20]
    Akai M, Shirasaki Y, Tateishi T. Electrical stimulation on joint contracture: an experiment in rat model with direct current[J]. Arch Phys Med Rehabil, 1997, 78(4): 405-409. doi: 10.1016/S0003-9993(97)90233-1
    [21]
    Lin Y, Nishimura R, Nozaki K, et al. Effects of pulsing electromagnetic fields on the ligament healing in rabbits[J]. J Vet Med Sci, 1992, 54(5): 1017-1022. doi: 10.1292/jvms.54.1017
    [22]
    Nessler JP, Mass DP. Direct-current electrical stimulation of tendon healing in vitro[J]. Clin Orthop Relat Res, 1987, (217): 303-312. http://www.ncbi.nlm.nih.gov/pubmed/3493869
    [23]
    Dunn SM. Multiple calcium channels in synaptosomes: voltage dependence of 1, 4-dihydropyridine binding and effects on function[J]. Biochemistry, 1988, 27(14): 5275-5281. doi: 10.1021/bi00414a049
    [24]
    Poltawski L, Johnson M, Watson T. Microcurrent therapy in the management of chronic tennis elbow: pilot studies to optimize parameters[J]. Physiother Res Int, 2012, 17(3): 157-166. doi: 10.1002/pri.v17.3
    [25]
    Brown MD, Cotter MA, Hudlická O, et al. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles[J]. Pflugers Arch, 1976, 361(3): 241-250. doi: 10.1007/BF00587288
    [26]
    Lambert MI, Marcus P, Burgess T, et al. Electro-membrane microcurrent therapy reduces signs and symptoms of muscle damage[J]. Med Sci Sports Exerc, 2002, 34(4): 602-607. http://www.ncbi.nlm.nih.gov/pubmed/11932567
    [27]
    Mäenpää H, Jaakkola R, Sandström M, et al. Does microcurrent stimulation increase the range of movement of ankle dorsiflexion in children with cerebral palsy?[J]. Disabil Rehabil, 2004, 26(11): 669-677. doi: 10.1080/09638280410001684046
    [28]
    Curtis D, Fallows S, Morris M, et al. The efficacy of frequency specific microcurrent therapy on delayed onset muscle soreness[J]. J Bodyw Mov Ther, 2010, 14(3): 272-279. doi: 10.1016/j.jbmt.2010.01.009
    [29]
    Byl NN, McKenzie AL, West JM, et al. Pulsed microamperage stimulation: a controlled study of healing of surgically induced wounds in Yucatan pigs[J]. Phys Ther, 1994, 74(3): 201-213, discussion 213-218. doi: 10.1093/ptj/74.3.201
    [30]
    Farmer SE, James M. Contractures in orthopaedic and neurological conditions: a review of causes and treatment[J]. Disabil Rehabil, 2001, 23(13): 549-558. doi: 10.1080/09638280010029930
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (3233) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return