Citation: | Dongmei Zhu, Lingli Luo, Hanjie Zeng, Zheng Zhang, Min Huang, Suming Zhou. Knockdown of 11β-hydroxysteroid dehydrogenase type 1 alleviates LPS-induced myocardial dysfunction through the AMPK/SIRT1/PGC-1α pathway[J]. The Journal of Biomedical Research, 2023, 37(4): 290-301. doi: 10.7555/JBR.36.20220212 |
[1] |
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): e1063–e1143. doi: 10.1097/CCM.0000000000005337
|
[2] |
Wang R, Xu Y, Fang Y, et al. Pathogenetic mechanisms of septic cardiomyopathy[J]. J Cell Physiol, 2022, 237(1): 49–58. doi: 10.1002/jcp.30527
|
[3] |
Ehrman RR, Sullivan AN, Favot MJ, et al. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature[J]. Crit Care, 2018, 22(1): 112. doi: 10.1186/s13054-018-2043-8
|
[4] |
De Castro R, Ruiz D, Lavín BA, et al. Cortisol and adrenal androgens as independent predictors of mortality in septic patients[J]. PLoS One, 2019, 14(4): e0214312. doi: 10.1371/journal.pone.0214312
|
[5] |
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family[J]. Mol Cell Endocrinol, 2021, 526: 111210. doi: 10.1016/j.mce.2021.111210
|
[6] |
Cohen J, Blumenthal A, Cuellar-Partida G, et al. The relationship between adrenocortical candidate gene expression and clinical response to hydrocortisone in patients with septic shock[J]. Intensive Care Med, 2021, 47(9): 974–983. doi: 10.1007/s00134-021-06464-5
|
[7] |
McSweeney SJ, Hadoke PWF, Kozak AM, et al. Improved heart function follows enhanced inflammatory cell recruitment and angiogenesis in 11betaHSD1-deficient mice post-MI[J]. Cardiovasc Res, 2010, 88(1): 159–167. doi: 10.1093/cvr/cvq149
|
[8] |
Mylonas KJ, Turner NA, Bageghni SA, et al. 11β-HSD1 suppresses cardiac fibroblast CXCL2, CXCL5 and neutrophil recruitment to the heart post MI[J]. J Endocrinol, 2017, 233(3): 315–327. doi: 10.1530/JOE-16-0501
|
[9] |
Huang M, Liu J, Sheng Y, et al. 11β-hydroxysteroid dehydrogenase type 1 inhibitor attenuates high-fat diet induced cardiomyopathy[J]. J Mol Cell Cardiol, 2018, 125: 106–116. doi: 10.1016/j.yjmcc.2018.10.002
|
[10] |
Sun Y, Yao X, Zhang Q, et al. Beclin-1-dependent autophagy protects the heart during sepsis[J]. Circulation, 2018, 138(20): 2247–2262. doi: 10.1161/CIRCULATIONAHA.117.032821
|
[11] |
Koentges C, Cimolai MC, Pfeil K, et al. Impaired SIRT3 activity mediates cardiac dysfunction in endotoxemia by calpain-dependent disruption of ATP synthesis[J]. J Mol Cell Cardiol, 2019, 133: 138–147. doi: 10.1016/j.yjmcc.2019.06.008
|
[12] |
Shao S, Zhang X, Zhang M. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance[J]. Biochem Biophys Res Commun, 2016, 478(1): 474–480. doi: 10.1016/j.bbrc.2016.06.015
|
[13] |
Wang L, Liu J, Zhang A, et al. BVT. 2733, a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, attenuates obesity and inflammation in diet-induced obese mice[J]. PLoS One, 2012, 7(7): e40056. doi: 10.1371/journal.pone.0040056
|
[14] |
Koh EH, Kim AR, Kim H, et al. 11β-HSD1 reduces metabolic efficacy and adiponectin synthesis in hypertrophic adipocytes[J]. J Endocrinol, 2015, 225(3): 147–158. doi: 10.1530/JOE-15-0117
|
[15] |
Haileselassie B, Su E, Pozios I, et al. Myocardial oxidative stress correlates with left ventricular dysfunction on strain echocardiography in a rodent model of sepsis[J]. Intensive Care Med Exp, 2017, 5(1): 21. doi: 10.1186/s40635-017-0134-5
|
[16] |
Miliaraki M, Briassoulis P, Ilia S, et al. Oxidant/antioxidant status is impaired in sepsis and is related to anti-apoptotic, inflammatory, and innate immunity alterations[J]. Antioxidants (Basel), 2022, 11(2): 231. doi: 10.3390/antiox11020231
|
[17] |
Marino A, Hausenloy DJ, Andreadou I, et al. AMP-activated protein kinase: a remarkable contributor to preserve a healthy heart against ROS injury[J]. Free Radic Biol Med, 2021, 166: 238–254. doi: 10.1016/j.freeradbiomed.2021.02.047
|
[18] |
Xu W, Yan J, Ocak U, et al. Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats[J]. Theranostics, 2021, 11(2): 522–539. doi: 10.7150/thno.49426
|
[19] |
White CI, Jansen MA, McGregor K, et al. Cardiomyocyte and vascular smooth muscle-independent 11β-hydroxysteroid dehydrogenase 1 amplifies infarct expansion, hypertrophy, and the development of heart failure after myocardial infarction in male mice[J]. Endocrinology, 2016, 157(1): 346–357. doi: 10.1210/en.2015-1630
|
[20] |
Park SB, Park JS, Jung WH, et al. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages[J]. J Pharmacol Sci, 2016, 131(4): 241–250. doi: 10.1016/j.jphs.2016.07.003
|
[21] |
Letts JA, Sazanov LA. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain[J]. Nat Struct Mol Biol, 2017, 24(10): 800–808. doi: 10.1038/nsmb.3460
|
[22] |
Vico TA, Marchini T, Ginart S, et al. Mitochondrial bioenergetics links inflammation and cardiac contractility in endotoxemia[J]. Basic Res Cardiol, 2019, 114(5): 38. doi: 10.1007/s00395-019-0745-y
|
[23] |
Liu J, Kong X, Wang L, et al. Essential roles of 11β-HSD1 in regulating brown adipocyte function[J]. J Mol Endocrinol, 2013, 50(1): 103–113. doi: 10.1530/JME-12-0099
|
[24] |
Rius-Pérez S, Torres-Cuevas I, Millán I, et al. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism[J]. Oxid Med Cell Longev, 2020, 2020: 1452696. doi: 10.1155/2020/1452696
|
[25] |
Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α[J]. Arthritis Rheumatol, 2015, 67(8): 2141–2153. doi: 10.1002/art.39182
|
[26] |
Hong G, Zheng D, Zhang L, et al. Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis[J]. Free Radic Biol Med, 2018, 123: 125–137. doi: 10.1016/j.freeradbiomed.2018.05.073
|