Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 37 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Zhenxiang Gong, Li Ba, Jiahui Tang, Yuan Yang, Zehui Li, Mao Liu, Chun Yang, Fengfei Ding, Min Zhang. Gut microbiota links with cognitive impairment in amyotrophic lateral sclerosis: A multi-omics study[J]. The Journal of Biomedical Research, 2023, 37(2): 125-137. doi: 10.7555/JBR.36.20220198
Citation: Zhenxiang Gong, Li Ba, Jiahui Tang, Yuan Yang, Zehui Li, Mao Liu, Chun Yang, Fengfei Ding, Min Zhang. Gut microbiota links with cognitive impairment in amyotrophic lateral sclerosis: A multi-omics study[J]. The Journal of Biomedical Research, 2023, 37(2): 125-137. doi: 10.7555/JBR.36.20220198

Gut microbiota links with cognitive impairment in amyotrophic lateral sclerosis: A multi-omics study

doi: 10.7555/JBR.36.20220198
More Information
  • Corresponding author: Fengfei Ding, Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai 200032, China. Tel: +86-21-54237900, E-mail: fengfei_ding@fudan.edu.cn; Min Zhang, Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Qiaokou District, Wuhan, Hubei 430030, China. Tel: +86-27-83663895, E-mail: zhang_min_3464@126.com
  • Received: 2022-09-07
  • Revised: 2022-11-05
  • Accepted: 2022-11-22
  • Published: 2022-12-28
  • Issue Date: 2023-03-28
  • Recently, cognitive impairments (CI) and behavioral abnormalities in patients with amyotrophic lateral sclerosis (ALS) have been reported. However, the underlying mechanisms have been poorly understood. In the current study, we explored the role of gut microbiota in CI of ALS patients. We collected fecal samples from 35 ALS patients and 35 healthy controls. The cognitive function of the ALS patients was evaluated using the Edinburgh Cognitive and Behavioral ALS Screen. We analyzed these samples by using 16S rRNA gene sequencing as well as both untargeted and targeted (bile acids) metabolite mapping between patients with CI and patients with normal cognition (CN). We found altered gut microbial communities and a lower ratio of Firmicutes/Bacteroidetes in the CI group, compared with the CN group. In addition, the untargeted metabolite mapping revealed that 26 and 17 metabolites significantly increased and decreased, respectively, in the CI group, compared with the CN group. These metabolites were mapped to the metabolic pathways associated with bile acids. We further found that cholic acid and chenodeoxycholic acid were significantly lower in the CI group than in the CN group. In conclusion, we found that the gut microbiota and its metabolome profile differed between ALS patients with and without CI and that the altered bile acid profile in fecal samples was significantly associated with CI in ALS patients. These results need to be replicated in larger studies in the future.


  • CLC number: R744.8, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2011, 377(9769): 942–955. doi: 10.1016/S0140-6736(10)61156-7
    Arnoriaga-Rodríguez M, Fernández-Real JM. Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction[J]. Rev Endocr Metab Disord, 2019, 20(4): 473–480. doi: 10.1007/s11154-019-09537-5
    Crockford C, Newton J, Lonergan K, et al. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS[J]. Neurology, 2018, 91(15): e1370–e1380. doi: 10.1212/WNL.0000000000006317
    Chiò A, Ilardi A, Cammarosano S, et al. Neurobehavioral dysfunction in ALS has a negative effect on outcome and use of PEG and NIV[J]. Neurology, 2012, 78(14): 1085–1089. doi: 10.1212/WNL.0b013e31824e8f53
    Elamin M, Phukan J, Bede P, et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia[J]. Neurology, 2011, 76(14): 1263–1269. doi: 10.1212/WNL.0b013e318214359f
    Ye S, Ji Y, Li C, et al. The edinburgh cognitive and behavioural ALS screen in a Chinese amyotrophic lateral sclerosis population[J]. PLoS One, 2016, 11(5): e0155496. doi: 10.1371/journal.pone.0155496
    Xu Z, Alruwaili ARS, Henderson RD, et al. Screening for cognitive and behavioural impairment in amyotrophic lateral sclerosis: frequency of abnormality and effect on survival[J]. J Neurol Sci, 2017, 376: 16–23. doi: 10.1016/j.jns.2017.02.061
    Goldstein LH, Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment[J]. Lancet Neurol, 2013, 12(4): 368–380. doi: 10.1016/S1474-4422(13)70026-7
    Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease[J]. Nat Rev Neurol, 2018, 14(9): 544–558. doi: 10.1038/s41582-018-0047-2
    Zou Z, Zhou Z, Che C, et al. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis[J]. J Neurol, Neurosurg, Psychiatry, 2017, 88(7): 540–549. doi: 10.1136/jnnp-2016-315018
    He J, Tang L, Benyamin B, et al. C9orf72 hexanucleotide repeat expansions in Chinese sporadic amyotrophic lateral sclerosis[J]. Neurobiol Aging, 2015, 36(9): 2660.e1–2660.e8. doi: 10.1016/j.neurobiolaging.2015.06.002
    Tang J, Yang Y, Gong Z, et al. Plasma uric acid helps predict cognitive impairment in patients with amyotrophic lateral sclerosis[J]. Front Neurol, 2021, 12: 789840. doi: 10.3389/fneur.2021.789840
    Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression[J]. Cell Res, 2019, 29(10): 787–803. doi: 10.1038/s41422-019-0216-x
    Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders[J]. Nutrients, 2021, 13(6): 2099. doi: 10.3390/nu13062099
    Matisz CE, Gruber AJ. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders[J]. Neurosci Biobehav Rev, 2022, 133: 104497. doi: 10.1016/j.neubiorev.2021.12.020
    Giau VV, Wu S, Jamerlan A, et al. Gut microbiota and their neuroinflammatory implications in Alzheimer's disease[J]. Nutrients, 2018, 10(11): 1765. doi: 10.3390/nu10111765
    Białecka-Dębek A, Granda D, Szmidt MK, et al. Gut microbiota, probiotic interventions, and cognitive function in the elderly: a review of current knowledge[J]. Nutrients, 2021, 13(8): 2514. doi: 10.3390/nu13082514
    Mccombe PA, Henderson RD, Lee A, et al. Gut microbiota in ALS: possible role in pathogenesis?[J]. Expert Rev Neurother, 2019, 19(9): 785–805. doi: 10.1080/14737175.2019.1623026
    Di Gioia D, Bozzi Cionci N, Baffoni L, et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis[J]. BMC Med, 2020, 18(1): 153. doi: 10.1186/s12916-020-01607-9
    Blacher E, Bashiardes S, Shapiro H, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice[J]. Nature, 2019, 572(7770): 474–480. doi: 10.1038/s41586-019-1443-5
    Brenner D, Hiergeist A, Adis C, et al. The fecal microbiome of ALS patients[J]. Neurobiol Aging, 2018, 61: 132–137. doi: 10.1016/j.neurobiolaging.2017.09.023
    Niccolai E, Di Pilato V, Nannini G, et al. The Gut Microbiota-Immunity Axis in ALS: A Role in Deciphering Disease Heterogeneity?[J]. Biomedicines, 2021, 9(7).
    Brooks BR, Miller RG, Swash M, et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Other Motor Neuron Disord, 2000, 1(5): 293–299. doi: 10.1080/146608200300079536
    Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase Ⅲ)[J]. J Neurol Sci, 1999, 169(1–2): 13–21. doi: 10.1016/s0022-510x(99)00210-5
    Zhai C, Zheng J, An B, et al. Intestinal microbiota composition in patients with amyotrophic lateral sclerosis: establishment of bacterial and archaeal communities analyses[J]. Chin Med J, 2019, 132(15): 1815–1822. doi: 10.1097/CM9.0000000000000351
    López-García A, Pineda-Quiroga C, Atxaerandio R, et al. Comparison of mothur and QIIME for the analysis of rumen microbiota composition based on 16S rRNA amplicon sequences[J]. Front Microbiol, 2018, 9: 3010. doi: 10.3389/fmicb.2018.03010
    Hugerth LW, Andersson AF. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing[J]. Front Microbiol, 2017, 8: 1561. doi: 10.3389/fmicb.2017.01561
    Yang J, Wang H, Roberts DJ, et al. Persistence of antibiotic resistance genes from river water to tap water in the Yangtze River Delta[J]. Sci Total Environ, 2020, 742: 140592. doi: 10.1016/j.scitotenv.2020.140592
    Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12(6): R60. doi: 10.1186/gb-2011-12-6-r60
    Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria[J]. J Lipid Res, 2006, 47(2): 241–259. doi: 10.1194/jlr.R500013-JLR200
    Duboc H, Rainteau D, Rajca S, et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome[J]. Neurogastroenterol Motil, 2012, 24(6): 513–520. doi: 10.1111/j.1365-2982.2012.01893.x
    Staley C, Weingarden AR, Khoruts A, et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states[J]. Appl Microbiol Biotechnol, 2017, 101(1): 47–64. doi: 10.1007/s00253-016-8006-6
    Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases[J]. Microorganisms, 2019, 7(1): 14. doi: 10.3390/microorganisms7010014
    Fang X, Wang X, Yang S, et al. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing[J]. Front Microbiol, 2016, 7: 1479. doi: 10.3389/fmicb.2016.01479
    Rowin J, Xia Y, Jung B, et al. Gut inflammation and dysbiosis in human motor neuron disease[J]. Physiol Rep, 2017, 5(18): e13443. doi: 10.14814/phy2.13443
    Zeng Q, Shen J, Chen K, et al. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients[J]. Sci Rep, 2020, 10(1): 12998. doi: 10.1038/s41598-020-69845-8
    Ngo ST, Restuadi R, McCrae AF, et al. Progression and survival of patients with motor neuron disease relative to their fecal microbiota[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2020, 21(7–8): 549–562. doi: 10.1080/21678421.2020.1772825
    Nicholson K, Bjornevik K, Abu-Ali G, et al. The human gut microbiota in people with amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2021, 22(3–4): 186–194. doi: 10.1080/21678421.2020.1828475
    Sinha SR, Haileselassie Y, Nguyen LP, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659–670.e5. doi: 10.1016/j.chom.2020.01.021
    Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis[J]. Nat Commun, 2019, 10(1): 5029. doi: 10.1038/s41467-019-13036-1
    Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41–50. doi: 10.1016/j.cmet.2016.05.005
    Gee LMV, Barron-Millar B, Leslie J, et al. Anti-cholestatic therapy with obeticholic acid improves short-term memory in bile duct-ligated mice[J]. Am J Pathol, 2022, 193(1): 11–26. doi: 10.1016/j.ajpath.2022.09.005
    Ding L, Yang L, Wang Z, et al. Bile acid nuclear receptor FXR and digestive system diseases[J]. Acta Pharm Sin B, 2015, 5(2): 135–144. doi: 10.1016/j.apsb.2015.01.004
    Bazzari FH, Abdallah DM, El-Abhar HS. Chenodeoxycholic acid ameliorates AlCl3-induced Alzheimer's disease neurotoxicity and cognitive deterioration via enhanced insulin signaling in rats[J]. Molecules, 2019, 24(10): 1992. doi: 10.3390/molecules24101992
    Mahmoudiandehkordi S, Arnold M, Nho K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome[J]. Alzheimers Dement, 2019, 15(1): 76–92. doi: 10.1016/j.jalz.2018.07.217
    Suhre K, Meisinger C, Döring A, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting[J]. PLoS One, 2010, 5(11): e13953. doi: 10.1371/journal.pone.0013953
    Mertens KL, Kalsbeek A, Soeters MR, et al. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system[J]. Front Neurosci, 2017, 11: 617. doi: 10.3389/fnins.2017.00617
  • JBR-2022-0198-Supplementary.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (725) PDF downloads(80) Cited by()
    Proportional views
    Relative Articles


    DownLoad:  Full-Size Img  PowerPoint