Citation: | Liu-Hua Zhou, Jia-Teng Sun, Tong-Tong Yang, Si-Bo Wang, Tian-Kai Shan, Ling-Feng Gu, Jia-Wen Chen, Tian-Wen Wei, Di Zhao, Chong Du, Yu-Lin Bao, Hao Wang, Xiao-Hu Lu, Hao-Liang Sun, Meng Lv, Di Yang, Lian-Sheng Wang. Improved methodology for efficient establishment of the myocardial ischemia-reperfusion model in pigs through the median thoracic incision[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220189 |
[1] |
Docherty KF, Ferreira JP, Sharma A, et al. Predictors of sudden cardiac death in high-risk patients following a myocardial infarction[J]. Eur J Heart Fail, 2020, 22(5): 848–855. doi: 10.1002/ejhf.1694
|
[2] |
Zhao M, Nakada Y, Wei Y, et al. Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction[J]. Circulation, 2021, 144(3): 210–228. doi: 10.1161/CIRCULATIONAHA.120.049497
|
[3] |
Beard JR, Officer A, de Carvalho IA, et al. The world report on ageing and health: a policy framework for healthy ageing[J]. Lancet, 2016, 387(10033): 2145–2154. doi: 10.1016/S0140-6736(15)00516-4
|
[4] |
Farina FM, Serio S, Hall IF, et al. The epigenetic enzyme DOT1L orchestrates vascular smooth muscle cell-monocyte crosstalk and protects against atherosclerosis via the NF-κB pathway[J]. Eur Heart J, 2022, 43(43): 4562–4576. doi: 10.1093/eurheartj/ehac097
|
[5] |
Schüttler D, Tomsits P, Bleyer C, et al. A practical guide to setting up pig models for cardiovascular catheterization, electrophysiological assessment and heart disease research[J]. Lab Anim, 2022, 51(2): 46–67. doi: 10.1038/s41684-021-00909-6
|
[6] |
Gabisonia K, Prosdocimo G, Aquaro GD, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs[J]. Nature, 2019, 569(7756): 418–422. doi: 10.1038/s41586-019-1191-6
|
[7] |
Ekeløf S, Rosenberg J, Jensen JS, et al. Pharmacological attenuation of myocardial reperfusion injury in a closed-chest porcine model: a systematic review[J]. J Cardiovasc Trans Res, 2014, 7(6): 570–580. doi: 10.1007/s12265-014-9574-4
|
[8] |
Li C, Gao R, Song L, et al. Create a standard mini-swine model of myocardial ischemia-reperfusion injury by silk suture ligating[J]. Mol Cardiol China, 2006, 6(1): 30–32.
|
[9] |
Sun H, Guo T, Yu Z, et al. Feasibility study of establishing a swine myocardial infarction model by balloon occlusion method[J]. J Clin Rehabil Tissue Eng Res, 2009, 13(46): 9032–9036.
|
[10] |
Erratum: myocardial infarction by percutaneous embolization Coil deployment in a swine model[J]. J Vis Exp, 2022, (183).
|
[11] |
Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs[J]. Am J Physiol Heart Circ Physiol, 2006, 290(3): H1011–H1018. doi: 10.1152/ajpheart.00864.2005
|
[12] |
Wei QM. Influence of rhBNP on no-reflow in pigs and ventricular remodeling and systolic synchrony in patients with acute myocardial infarction performed PCI (in Chinese)[D]. Shijiazhuang: Hebei Medical University, 2007.
|
[13] |
Li D, Yu T, Li X, et al. Development of acute myocardial infarction reperfusion model with Chinese mini pig by coronary occlusion with balloon angioplasty[J]. J Tianjin Med Univ, 2010, 16(3): 377–380.
|
[14] |
Mlcek M, Meani P, Cotza M, et al. Atrial septostomy for left ventricular unloading during extracorporeal membrane oxygenation for cardiogenic shock: animal model[J]. JACC Cardiovasc Interv, 2021, 14(24): 2698–2707. doi: 10.1016/j.jcin.2021.09.011
|
[15] |
Bai Y, Xin Y. Research progress of methods to establish the model of myocardial ischemia reperfusion injury[J]. J Inner Mong Univ Natl, 2015, 30(3): 251–256.
|
[16] |
Zhang Y, Li X, Yang R. Dynamic expression of p53 mRNA and Caspase-3 mRNA in rats with myocardial ischemia reperfusion injury and intervention effect of medicine[J]. J Appl Clin Pediatr, 2009, 24(13): 1006–1007.
|
[17] |
He S, Wu K, Ye S, et al. Chin J Intervent Cardiol (in Chinese), 2012, 20(2): 105–109.
|
[18] |
Ma N, Pu H, Li S. Establishment of acute myocardial infarction pig model by thoracotomy ligation[J]. World Latest Med Inf Dig (Electron Version), 2020, 20(97): 250–251,258.
|
[19] |
Weaver ME, Pantely GA, Bristow JD, et al. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man[J]. Cardiovasc Res, 1986, 20(12): 907–917. doi: 10.1093/cvr/20.12.907
|
[20] |
Weaver ME, Pantely GA, Bristow JD, et al. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man[J]. Cardiovasc Res, 1986, 20(12): 907–917. doi: 10.1093/cvr/20.12.907
|
[21] |
Koudstaal S, Lorkeers SJO, Gho JMIH, et al. Myocardial infarction and functional outcome assessment in pigs[J]. J Vis Exp, 2014, (86): 51269.
|
[22] |
Hernándiz A, Cerrada I, Díez JL, et al. Comparative study of functional and structural changes produced in a porcine model of acute and chronic heart attack[J]. Arch Cardiol Mex, 2016, 86(1): 64–74.
|
[23] |
Ellenbroek GHJM, van Hout GPJ, Timmers L, et al. Primary outcome assessment in a pig model of acute myocardial infarction[J]. J Vis Exp, 2016, (116): 54021.
|
[24] |
Bochaton T, Crola-Da-Silva C, Pillot B, et al. Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D[J]. J Mol Cell Cardiol, 2015, 84: 61–69. doi: 10.1016/j.yjmcc.2015.03.017
|
[25] |
Mansell DS, Bruno VD, Sammut E, et al. Acute regional changes in myocardial strain may predict ventricular remodelling after myocardial infarction in a large animal model[J]. Sci Rep, 2021, 11(1): 18322. doi: 10.1038/s41598-021-97834-y
|
[26] |
Tian Y, Li J, Zhang B, et al. Establishment of acute myocardial infarction model by percutaneous coronary balloon combined with gelfoam embolization in miniature pigs[J]. J Cardiopulm Vasc Dis, 2020, 39(9): 1122–1126,1133.
|
[27] |
Peng C, Wang J, Yang K, et al. Establishment of miniature swine myocardial infarction model by percutaneous balloon occlusion method[J]. Chin J Pathophysiol, 2010, 26(9): 1867–1872.
|
[28] |
Iqbal J, Chamberlain J, Alfaidi M, et al. Carbon monoxide releasing molecule A1 reduces myocardial damage after acute myocardial infarction in a porcine model[J]. J Cardiovasc Pharmacol, 2021, 78(5): e656–e661. doi: 10.1097/FJC.0000000000001067
|
[29] |
Zhu D, Hou J, Qian M, et al. Nitrate-functionalized patch confers cardioprotection and improves heart repair after myocardial infarction via local nitric oxide delivery[J]. Nat Commun, 2021, 12(1): 4501. doi: 10.1038/s41467-021-24804-3
|
[30] |
Liu S, Li K, Wagner Florencio L, et al. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction[J]. Sci Transl Med, 2021, 13(600): eabd6892. doi: 10.1126/scitranslmed.abd6892
|
[31] |
Te Lintel Hekkert M, Newton G, Chapman K, et al. Preclinical trial of a MAP4K4 inhibitor to reduce infarct size in the pig: does cardioprotection in human stem cell-derived myocytes predict success in large mammals?[J]. Basic Res Cardiol, 2021, 116(1): 34. doi: 10.1007/s00395-021-00875-7
|
[32] |
Zhong C, Qiu H, Chen J, et al. Effects of volatile anesthetic preconditioning on expression of NFkB-regulated genes in aged rat myocardium[J]. J Biomed Res, 2017, 33(4): 264–270. doi: 10.7555/JBR.32.20170071
|