• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Natalia V. Naryzhnaya, Leonid N. Maslov, Ivan A. Derkachev, Huijie Ma, Yi Zhang, N. Rajendra Prasad, Nirmal Singh, Feng Fu, Jian-Ming Pei, Akpay Sarybaev, Akylbek Sydykov. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220125
Citation: Natalia V. Naryzhnaya, Leonid N. Maslov, Ivan A. Derkachev, Huijie Ma, Yi Zhang, N. Rajendra Prasad, Nirmal Singh, Feng Fu, Jian-Ming Pei, Akpay Sarybaev, Akylbek Sydykov. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220125

The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion

doi: 10.7555/JBR.36.20220125
More Information
  • Corresponding author: Leonid N. Maslov, Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Kievskaya 111A, Tomsk, Tomsk region, 634012,Russia, Tel: +7-3822-262174, E-mail: maslov@cardio-tomsk.ru
  • Received: 2022-05-26
  • Revised: 2022-08-31
  • Accepted: 2022-09-05
  • Published: 2022-10-28
  • Acute myocardial infarction (AMI) and sudden cardiac death (SCD), which are associated with acute cardiac ischemia, are one of the leading causes of death of adults in economically developed countries. The development of new approaches for treatment and prevention of AMI, and SCD remains the highest priority for medicine. A study of the cardiovascular effects of chronic hypoxia (CH) could contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, the vasoprotective, and the antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms which can lead to the development of the cardioprotective effect of CH. A study of the CH-activated protective signaling pathways could contribute to a better understanding of the development of CH as well as could promote the development of new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.


  • CLC number: R542.2, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Musil J, Procházka J, Krofta K, et al. Effect of chronic systemic hypoxia of the methaemoglobin type on the rat myocardium and its resistance to anoxia[J]. Physiol Bohemoslov, 1966, 15(4): 357–361.
    Poupa O, Krofta K, Prochazka J, et al. The resistance of the myocardium to anoxia in animals acclimated to simulated altitude[J]. Physiol Bohemoslov, 1965, 14: 233–237.
    Poupa O, Krofta K, Rakusan K, et al. Myoglobin content of the heart and resistance of the isolated myocardium to anoxia in vitro during adaptation to high altitude hypoxia[J]. Physiol Bohemoslov, 1966, 15(5): 450–453.
    Poupa O, Krofta K, Prochazka J, et al. Acclimation to simulated high altitude and acute cardiac necrosis[J]. Fed Proc, 1966, 25(4): 1243–1246.
    Meerson FZ, Gomzakov OA, Shimkovich MV. Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis[J]. Am J Cardiol, 1973, 31(1): 30–34. doi: 10.1016/0002-9149(73)90806-0
    Meerson FZ, Ustinova EE, Orlova EH. Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia[J]. Clin Cardiol, 1987, 10(12): 783–789. doi: 10.1002/clc.4960101202
    Kronenberg RS, Safar P, Lee J, et al. Pulmonary artery pressure and alveolar gas exchange in man during acclimatization to 12, 470 ft[J]. J Clin Invest, 1971, 50(4): 827–837. doi: 10.1172/JCI106554
    Pen̄aloza D, Sime F. Chronic cor pulmonale due to loss of altitude acclimatization (chronic mountain sickness)[J]. Am J Med, 1971, 50(6): 728–743. doi: 10.1016/0002-9343(71)90181-1
    Sime F, Peñaloza D, Ruiz L. Bradycardia, increased cardiac output, and reversal of pulmonary hypertension in altitude natives living at sea level[J]. Br Heart J, 1971, 33(5): 647–657. doi: 10.1136/hrt.33.5.647
    Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology[J]. Physiol Rev, 2003, 83(4): 1113–1151. doi: 10.1152/physrev.00009.2003
    Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17(12): 773–789. doi: 10.1038/s41569-020-0403-y
    Neckář J, Ošťádal B, Kolář F. Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery[J]. Physiol Res, 2004, 53(6): 621–628.
    Zhang Y, Zhong N, Zhu H, et al. Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium[J]. Acta Physiol Sin, 2000, 52(2): 89–92.
    Meerson FZ, Boev VM, Kots II, et al. The effect of adaptation to periodic hypoxia on the tolerance of untrained subjects for physical loading and idiopathic cardiac arrhythmias[J]. Fiziol Cheloveka (in Russian), 1990, 16(1): 94–105.
    Aleshin IA, Tin’kov AN, Kots II, et al. Experience in treating patients with cardiovascular diseases by means of adaptation to periodic barochamber hypoxia[J]. Ter Arkh (in Russian), 1997, 69(1): 54–58.
    Uskina EV, Maslov LN, Lishmanov YB. Antiarrhythmic effect of hypoxic preconditioning is mediated by activation of μ- and δ-opioid receptors[J]. Bull Exp Biol Med, 1998, 125(3): 239–241. doi: 10.1007/BF02496869
    Li J, Xu J, Xiao J, et al. Preservation of TSPO by chronic intermittent hypobaric hypoxia confers antiarrhythmic activity[J]. J Cell Mol Med, 2011, 15(1): 134–140. doi: 10.1111/j.1582-4934.2009.00949.x
    Zhou J, Ma H, Liu Y, et al. The anti-arrhythmic effect of chronic intermittent hypobaric hypoxia in rats with metabolic syndrome induced with fructose[J]. Can J Physiol Pharmacol, 2015, 93(4): 227–232. doi: 10.1139/cjpp-2014-0343
    Estrada JA, Williams AG Jr, Sun J, et al. δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) mediate intermittent hypoxia induced protection of canine myocardium[J]. Basic Res Cardiol, 2016, 111(2): 17.
    Barbé C, Rochetaing A, Kreher P. Ischemic tolerance of the heart by adaptation to chronic hypoxia is suppressed by high subchronic carbon monoxide exposure[J]. Inhal Toxicol, 2001, 13(3): 219–232. doi: 10.1080/08958370150502458
    Morand J, Arnaud C, Pepin JL, et al. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death[J]. Sci Rep, 2018, 8(1): 2997.
    Manukhina EB, Belkina LM, Terekhina OL, et al. Normobaric, intermittent hypoxia conditioning is cardio- and vasoprotective in rats[J]. Exp Biol Med, 2013, 238(12): 1413–1420. doi: 10.1177/1535370213508718
    Mallet RT, Ryou MG, Williams AG, et al. β1-Adrenergic receptor antagonism abrogates cardioprotective effects of intermittent hypoxia[J]. Basic Res Cardiol, 2006, 101(5): 436–446. doi: 10.1007/s00395-006-0599-y
    Naryzhnaya NV, Mukhamedzyanov AV, Lasukova TV, et al. Involvement of autonomic nervous system in antiarrhythmic effect of intermittent hypobaric hypoxia[J]. Bull Exp Biol Med, 2017, 163(3): 299–301. doi: 10.1007/s10517-017-3789-8
    Kohutova J, Elsnicova B, Holzerova K, et al. Anti-arrhythmic cardiac phenotype elicited by chronic intermittent hypoxia is associated with alterations in connexin-43 expression, phosphorylation, and distribution[J]. Front Endocrinol, 2019, 9: 789.
    Asemu G, Neckár J, Szárszoi O, et al. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats[J]. Physiol Res, 2000, 49(5): 597–606.
    Neckár J, Borchert GH, Hlousková P, et al. Brief daily episode of normoxia inhibits cardioprotection conferred by chronic continuous hypoxia. Role of oxidative stress and BKCa channels[J]. Curr Pharm Des, 2013, 19(39): 6880–6889. doi: 10.2174/138161281939131127115154
    Lishmanov IB, Naryzhnaia NV, Maslov LN, et al. The opiatergic link between the antiarrhythmic effect of adaptation and hypoxia in the model of ischemia and reperfusion in vivo[J]. Patol Fiziol Eksp Ter (in Russian), 2003, (1): 19–21.
    Wolfe BB, Voelkel NF. Effects of hypoxia on atrial muscarinic cholinergic receptors and cardiac parasympathetic responsiveness[J]. Biochem Pharmacol, 1983, 32(13): 1999–2002. doi: 10.1016/0006-2952(83)90418-5
    De Ferrari GM, Vanoli E, Curcuruto P, et al. Prevention of life-threatening arrhythmias by pharmacologic stimulation of the muscarinic receptors with oxotremorine[J]. Am Heart J, 1992, 124(4): 883–890. doi: 10.1016/0002-8703(92)90968-2
    Bober SL, Ciriello J, Jones DL. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia[J]. Am J Physiol Heart Circ Physiol, 2018, 314(6): H1160–H1168. doi: 10.1152/ajpheart.00173.2017
    Wu W, Lu Z. Loss of anti-arrhythmic effect of vagal nerve stimulation on ischemia-induced ventricular tachyarrhythmia in aged rats[J]. Tohoku J Exp Med, 2011, 223(1): 27–33. doi: 10.1620/tjem.223.27
    Vanoli E, De Ferrari GM, Stramba-Badiale M, et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction[J]. Circ Res, 1991, 68(5): 1471–1481. doi: 10.1161/01.RES.68.5.1471
    Wang S, Han H, Jiang Y, et al. Activation of cardiac M3 muscarinic acetylcholine receptors has cardioprotective effects against ischaemia-induced arrhythmias[J]. Clin Exp Pharmacol Physiol, 2012, 39(4): 343–349. doi: 10.1111/j.1440-1681.2012.05672.x
    Lin M, Liu R, Gozal D, et al. Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice[J]. Am J Physiol Heart Circ Physiol, 2007, 293(2): H997–H1006. doi: 10.1152/ajpheart.01124.2006
    Stembridge M, Ainslie PN, Hughes MG, et al. Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation[J]. J Appl Physiol, 2014, 117(3): 334–343. doi: 10.1152/japplphysiol.00233.2014
    Herrera EA, Farías JG, González-Candia A, et al. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats[J]. Mar Drugs, 2015, 13(2): 838–860.
    Wu S, Li Y, Shi Z, et al. Alteration of cholinergic anti-inflammatory pathway in rat with ischemic cardiomyopathy-modified electrophysiological function of heart[J]. J Am Heart Assoc, 2017, 6(9): e006510. doi: 10.1161/JAHA.117.006510
    Zhang Y, Zhong N, Zhou Z. Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle[J]. Life Sci, 2000, 67(20): 2465–2471. doi: 10.1016/S0024-3205(00)00832-8
    Naryzhnaia NV, Neckar J, Maslov LN, et al. The role of sarcolemmal and mitochondrial K(ATP)-channels in realization of the cardioprotection and antiarrhythmic effect of different regimens of hypobaric adaptation[J]. Ross Fiziol Zh Im I M Sechenova (in Russian), 2009, 95(8): 837–849.
    Neckář J, Papoušek F, Nováková O, et al. Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive[J]. Basic Res Cardiol, 2002, 97(2): 161–167. doi: 10.1007/s003950200007
    Tsibulnikov SY, Maslov LN, Naryzhnaya NV, et al. Role of protein kinase C, PI3 kinase, tyrosine kinases, NO-synthase, KATP channels and MPT pore in the signaling pathway of the cardioprotective effect of chronic continuous hypoxia[J]. Gen Physiol Biophys, 2018, 37(5): 537–547. doi: 10.4149/gpb_2018013
    Neckář J, Sźárszoi O, Herget J, et al. Cardioprotective effect of chronic hypoxia is blunted by concomitant hypercapnia[J]. Physiol Res, 2003, 52(2): 171–175.
    Neckář J, Marková I, Novák F, et al. Increased expression and altered subcellular distribution of PKC-δin chronically hypoxic rat myocardium: involvement in cardioprotection[J]. Am J Physiol Heart Circ Physiol, 2005, 288(4): H1566–H1572. doi: 10.1152/ajpheart.00586.2004
    Kolář F, Neckář J, Ošťádal B. MCC-134, a blocker of mitochondrial and opener of sarcolemmal ATP-sensitive K+ channels, abrogates cardioprotective effects of chronic hypoxia[J]. Physiol Res, 2005, 54(4): 467–471.
    Meng X, Yu H, Zhang W, et al. ZFP580, a novel zinc-finger transcription factor, is involved in cardioprotection of intermittent high-altitude hypoxia against myocardial ischemia-reperfusion injury[J]. PLoS One, 2014, 9(4): e94635. doi: 10.1371/journal.pone.0094635
    Xu W, Yu Z, Xie Y, et al. Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats[J]. Basic Res Cardiol, 2011, 106(3): 329–342. doi: 10.1007/s00395-011-0159-y
    Bourdier G, Flore P, Sanchez H, et al. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size[J]. Am J Physiol Heart Circ Physiol, 2016, 310(2): H279–H289.
    Milano G, Abruzzo PM, Bolotta A, et al. Impact of the phosphatidylinositide 3-kinase signaling pathway on the cardioprotection induced by intermittent hypoxia[J]. PLoS One, 2013, 8(10): e76659.
    Maslov LN, Naryzhnaia NV, Tsibulnikov SY, et al. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia[J]. Life Sci, 2013, 93(9–11): 373–379.
    Moulin S, Arnaud C, Bouyon S, et al. Curcumin prevents chronic intermittent hypoxia-induced myocardial injury[J]. Ther Adv Chronic Dis, 2020, 11: 2040622320922104.
    Wang Z, Si L. Hypoxia-inducible factor-1α and vascular endothelial growth factor in the cardioprotective effects of intermittent hypoxia in rats[J]. Ups J Med Sci, 2013, 118(2): 65–74. doi: 10.3109/03009734.2013.766914
    Kasparova D, Neckar J, Dabrowska L, et al. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems[J]. Physiol Genomics, 2015, 47(12): 612–620. doi: 10.1152/physiolgenomics.00058.2015
    Kolář F, Ježková J, Balková P, et al. Role of oxidative stress in PKC-δupregulation and cardioprotection induced by chronic intermittent hypoxia[J]. Am J Physiol Heart Circ Physiol, 2007, 292(1): H224–H230. doi: 10.1152/ajpheart.00689.2006
    Hrdlička J, Neckář J, Papoušek F, et al. Beneficial effect of continuous normobaric hypoxia on ventricular dilatation in rats with post-infarction heart failure[J]. Physiol Res, 2016, 65(5): 867–870.
    Zhu W, Xie Y, Chen L, et al. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury[J]. J Mol Cell Cardiol, 2006, 40(1): 96–106. doi: 10.1016/j.yjmcc.2005.09.016
    Ma H, Li Q, Ma H, et al. Chronic intermittent hypobaric hypoxia ameliorates ischemia/reperfusion-induced calcium overload in heart via Na+/Ca2+ exchanger in developing rats[J]. Cell Physiol Biochem, 2014, 34(2): 313–324. doi: 10.1159/000363001
    Maslov LN, Naryzhnaya NV, Prokudina ES, et al. Preserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: role of opioid receptors[J]. Clin Exp Pharmacol Physiol, 2015, 42(5): 496–501. doi: 10.1111/1440-1681.12383
    Prokudina ES, Naryzhnaya NV, Mukhomedzyanov AV, et al. Effect of chronic continuous normobaric hypoxia on functional state of cardiac mitochondria and tolerance of isolated rat heart to ischemia and reperfusion: role of µ and δ2 opioid receptors[J]. Physiol Res, 2019, 68(6): 909–920.
    Naryzhnaya NV, Prokudina ES, Nesterov EA, et al. The role of cardiac opioid receptors in the cardioprotective effect of continuous normobaric hypoxia[J]. Bull Exp Biol Med, 2020, 168(6): 727–729. doi: 10.1007/s10517-020-04789-7
    Naryzhnaya NV, Khaliulin I, Lishmanov YB, et al. Participation of opioid receptors in the cytoprotective effect of chronic normobaric hypoxia[J]. Physiol Res, 2019, 68(2): 245–253.
    Borchert GH, Yang C, Kolář F. Mitochondrial BKCa channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats[J]. Am J Physiol Heart Circ Physiol, 2011, 300(2): H507–H513. doi: 10.1152/ajpheart.00594.2010
    Holzerová K, Hlaváčková M, Žurmanová J, et al. Involvement of PKCε in cardioprotection induced by adaptation to chronic continuous hypoxia[J]. Physiol Res, 2015, 64(2): 191–201.
    Xu S, Jia L, Liu X, et al. Effect of chronic intermittent hypobaric hypoxia on cardiac function in female metabolic syndrome rats[J]. Adapt Med, 2021, 13: 8–15.
    Dong J, Zhu H, Zhu W, et al. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression[J]. Cell Res, 2003, 13(5): 385–391. doi: 10.1038/sj.cr.7290184
    Kolar D, Gresikova M, Waskova-Arnostova P, et al. Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult[J]. Mol Cell Biochem, 2017, 432(1–2): 99–108.
    Xie S, Deng Y, Pan Y, et al. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5’-monophosphate-activated protein kinase pathway[J]. Arch Biochem Biophys, 2016, 606: 41–52. doi: 10.1016/j.abb.2016.07.006
    Chang JC, Hu W, Lee WS, et al. Intermittent hypoxia induces autophagy to protect cardiomyocytes from endoplasmic reticulum stress and apoptosis[J]. Front Physiol, 2019, 10: 995. doi: 10.3389/fphys.2019.00995
    Gyongyosi A, Terraneo L, Bianciardi P, et al. The impact of moderate chronic hypoxia and hyperoxia on the level of apoptotic and autophagic proteins in myocardial tissue[J]. Oxid Med Cell Longev, 2018, 2018: 5786742.
    Nedvedova I, Kolar D, Elsnicova B, et al. Mitochondrial genome modulates myocardial Akt/Glut/HK salvage pathway in spontaneously hypertensive rats adapted to chronic hypoxia[J]. Physiol Genomics, 2018, 50(7): 532–541. doi: 10.1152/physiolgenomics.00040.2017
    Rathod KS, Koganti S, Jain AK, et al. Complete versus culprit only revascularisation in patients with cardiogenic shock complicating acute myocardial infarction: incidence and outcomes from the London heart attack group[J]. Cardiovasc Revasc Med, 2020, 21(3): 350–358. doi: 10.1016/j.carrev.2019.06.007
    Kopylov YN, Golubeva LY. Effect of adaptation to periodic hypoxia on stability of myocardial energy metabolism and contractility parameters in the presence of acute anoxia and reoxygenation[J]. Bull Exp Biol Med, 1991, 111(1): 27–30. doi: 10.1007/BF00841231
    Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, et al. The role of natriuretic peptides in the regulation of cardiac tolerance to ischemia/reperfusion and postinfarction heart remodeling[J]. J Cardiovasc Pharmacol Ther, 2021, 26(2): 131–148. doi: 10.1177/1074248420952243
    Casserly B, Pietras L, Schuyler J, et al. Cardiac atria are the primary source of ANP release in hypoxia-adapted rats[J]. Life Sci, 2010, 87(11–12): 382–389.
    Lordick F, Hauck RW, Senekowitsch R, et al. Atrial natriuretic peptide in acute hypoxia-exposed healthy subjects and in hypoxaemic patients[J]. Eur Respir J, 1995, 8(2): 216–221. doi: 10.1183/09031936.95.08020216
    Winter RJD, Meleagros L, Pervez S, et al. Atrial natriuretic peptide levels in plasma and in cardiac tissues after chronic hypoxia in rats[J]. Clin Sci (Lond), 1989, 76(1): 95–101. doi: 10.1042/cs0760095
    Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo[J]. Basic Res Cardiol, 2005, 100(5): 397–403.
    Wang S, Azarfar A, Wang Y, et al. WITHDRAWN: hematological and vasodilator characteristics for high altitude acclimatization in Holstein heifers ascended to high altitude[EB/OL].https://www.animbiosci.org/journal/view.php?doi=10.5713/ajas.18.0224.
    Feizi H, Rajaee K, Keyhanmanesh R, et al. Effect of ghrelin on renal erythropoietin production in chronic hypoxic rats[J]. Endocr Regul, 2014, 48(1): 3–8. doi: 10.4149/endo_2014_01_3
    Schmidt W, Spielvogel H, Eckardt KU, et al. Effects of chronic hypoxia and exercise on plasma erythropoietin in high-altitude residents[J]. J Appl Physiol, 1993, 74(4): 1874–1878. doi: 10.1152/jappl.1993.74.4.1874
    Zhang S, Ma K, Liu Y, et al. Stabilization of hypoxia-inducible factor by DMOG inhibits development of chronic hypoxia-induced right ventricular remodeling[J]. J Cardiovasc Pharmacol, 2016, 67(1): 68–75. doi: 10.1097/FJC.0000000000000315
    Asimakis GK, Inners-McBride K, Conti VR, et al. Transient β adrenergic stimulation can precondition the rat heart against postischaemic contractile dysfunction[J]. Cardiovasc Res, 1994, 28(11): 1726–1734. doi: 10.1093/cvr/28.11.1726
    Ravingerová T, Pancza D, Ziegelhoffer A, et al. Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: the role of α-adrenergic stimulation and K(ATP) channels[J]. Physiol Res, 2002, 51(2): 109–119.
    Shin MK, Han W, Joo H, et al. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test[J]. J Appl Physiol, 2017, 122(4): 767–774. doi: 10.1152/japplphysiol.00975.2016
    Zoccal DB, Bonagamba LGH, Oliveira FRT, et al. Increased sympathetic activity in rats submitted to chronic intermittent hypoxia[J]. Exp Physiol, 2007, 92(1): 79–85. doi: 10.1113/expphysiol.2006.035501
    Oštádal B, Ressl J, Urbanová D, et al. The effect of beta adrenergic blockade on pulmonary hypertension, right ventricular hypertrophy and polycythaemia, induced in rats by intermittent high altitude hypoxia[J]. Basic Res Cardiol, 1978, 73(5): 422–432. doi: 10.1007/BF01906523
    Zhu B, Simonis U, Cecchini G, et al. Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury[J]. J Cardiovasc Pharmacol Ther, 2006, 11(2): 119–128. doi: 10.1177/1074248406288757
    Hu A, Jiao X, Gao E, et al. Chronic β-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress[J]. J Pharmacol Exp Ther, 2006, 318(2): 469–475. doi: 10.1124/jpet.106.102160
    Du X, Gao X, Kiriazis H, et al. Transgenic α1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival[J]. Cardiovasc Res, 2006, 71(4): 735–743. doi: 10.1016/j.cardiores.2006.06.015
    León-Velarde F, Bourin MC, Germack R, et al. Differential alterations in cardiac adrenergic signaling in chronic hypoxia or norepinephrine infusion[J]. Am J Physiol Regul Integr Comp Physiol, 2001, 280(1): R274–R281. doi: 10.1152/ajpregu.2001.280.1.R274
    Wang P, Gallagher KP, Downey JM, et al. Pretreatment with endothelin-1 mimics ischemic preconditioning against infarction in isolated rabbit heart[J]. J Mol Cell Cardiol, 1996, 28(3): 579–588. doi: 10.1006/jmcc.1996.0054
    Bugge E, Ytrehus K. Endothelin-1 can reduce infarct size through protein kinase C and KATP channels in the isolated rat heart[J]. Cardiovasc Res, 1996, 32(5): 920–929. doi: 10.1016/S0008-6363(96)00129-0
    Duda M, Konior A, Klemenska E, et al. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart[J]. J Mol Cell Cardiol, 2007, 42(2): 400–410. doi: 10.1016/j.yjmcc.2006.10.014
    Zhang M, Gu W, Hong X. Involvement of endothelin 1 in remote preconditioning-induced cardioprotection through connexin 43 and Akt/GSK-3β signaling pathway[J]. Sci Rep, 2018, 8(1): 10941. doi: 10.1038/s41598-018-29196-x
    Tamareille S, Terwelp M, Amirian J, et al. Endothelin-1 release during the early phase of reperfusion is a mediator of myocardial reperfusion injury[J]. Cardiology, 2013, 125(4): 242–249. doi: 10.1159/000350655
    Blumberg FC, Wolf K, Arzt M, et al. Effects of ET-A receptor blockade on eNOS gene expression in chronic hypoxic rat lungs[J]. J Appl Physiol, 2003, 94(2): 446–452. doi: 10.1152/japplphysiol.00239.2002
    Pan P, Zhang X, Qian H, et al. Effects of electro-acupuncture on endothelium-derived endothelin-1 and endothelial nitric oxide synthase of rats with hypoxia-induced pulmonary hypertension[J]. Exp Biol Med, 2010, 235(5): 642–648. doi: 10.1258/ebm.2010.009353
    Wang N, Chang Y, Chen L, et al. Tanshinone IIA protects against chronic intermittent hypoxia-induced myocardial injury via activating the endothelin 1 pathway[J]. Biomed Pharmacother, 2017, 95: 1013–1020. doi: 10.1016/j.biopha.2017.08.036
    Hamid SA, Baxter GF. Adrenomedullin limits reperfusion injury in experimental myocardial infarction[J]. Basic Res Cardiol, 2005, 100(5): 387–396. doi: 10.1007/s00395-005-0538-3
    Nishida H, Sato T, Miyazaki M, et al. Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels[J]. Cardiovasc Res, 2008, 77(2): 398–405.
    Gong Y, Fan X, Wu X, et al. Changes of intermedin/adrenomedullin 2 and its receptors in the right ventricle of rats with chronic hypoxic pulmonary hypertension[J]. Acta Physiol Sin, 2007, 59(2): 210–214.
    Wang S, Yu Z, Liu K, et al. Synthesis and release of pulmonary tissue adrenomedullin on hypoxic pulmonary hypertension in rats and its significance[J]. Chin J Tuberc Respir Dis, 2001, 24(12): 725–727.
    Cheng Y, Dai L, Xia G. The alterations and clinical significance of serum thyroid hormone levels in patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Chin J Tuberc Respir Dis, 2016, 39(12): 939–943.
    Tsibulnikov S, Maslov L, Voronkov N, et al. Thyroid hormones and the mechanisms of adaptation to cold[J]. Hormones, 2020, 19(3): 329–339. doi: 10.1007/s42000-020-00200-2
    Jeddi S, Zaman J, Zadeh-Vakili A, et al. Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats[J]. Gene, 2016, 580(2): 169–176. doi: 10.1016/j.gene.2016.01.014
    Maslov LN, Khaliulin I, Oeltgen PR, et al. Prospects for creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists[J]. Med Res Rev, 2016, 36(5): 871–923.
    Naryzhnaya NV, Maslov LN, Prokudina ES, et al. Contribution of opioid receptors to the cytoprotective effect of the adaptation to chronic hypoxia at anoxia/reoxygenation of isolated cardiomyocytes[J]. Bull Exp Biol Med, 2015, 159(2): 209–212.
    Pei J, Zhou J, Bian J, et al. Impaired [Ca2+]i and pHiresponses to κ-opioid receptor stimulation in the heart of chronically hypoxic rats[J]. Am J Physiol Cell Physiol, 2000, 279(5): C1483–C1494. doi: 10.1152/ajpcell.2000.279.5.C1483
    Yuan F, Li H, Song S, et al. Opioid receptors mediate enhancement of ACh-induced aorta relaxation by chronic intermittent hypobaric hypoxia[J]. Acta Physiol Sin, 2013, 65(3): 269–275.
    Wu J, Li P, Wu X, et al. Chronic intermittent hypoxia decreases pain sensitivity and increases the expression of HIF1α and opioid receptors in experimental rats[J]. Sleep Breath, 2015, 19(2): 561–568. doi: 10.1007/s11325-014-1047-0
    Li C, Chen L, Song M, et al. Ferulic acid protects cardiomyocytes from TNF-α/cycloheximide-induced apoptosis by regulating autophagy[J]. Arch Pharm Res, 2020, 43(8): 863–874. doi: 10.1007/s12272-020-01252-z
    Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins[J]. Nat Chem Biol, 2008, 4(5): 313–321. doi: 10.1038/nchembio.83
    Gao C, Liu Y, Yu Q, et al. TNF-α antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregulating adiponectin[J]. Am J Physiol Heart Circ Physiol, 2015, 308(12): H1583–H1591. doi: 10.1152/ajpheart.00346.2014
    Chytilová A, Borchert GH, Mandíková-Alánová P, et al. Tumour necrosis factor-α contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia[J]. Acta Physiol, 2015, 214(1): 97–108. doi: 10.1111/apha.12489
    Alánová P, Chytilová A, Neckář J, et al. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia[J]. J Appl Physiol, 2017, 122(6): 1452–1461. doi: 10.1152/japplphysiol.00671.2016
    Bilenko MV. Ischemic and reperfusion injury to organs. Editors: Medicine, Moscow, 1989.
    Krylatov AV, Maslov LN, Voronkov NS, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system[J]. Curr Cardiol Rev, 2018, 14(4): 290–300. doi: 10.2174/1573403X14666180702152436
    Lien CF, Lee WS, Wang IC, et al. Intermittent hypoxia-generated ROS contributes to intracellular zinc regulation that limits ischemia/reperfusion injury in adult rat cardiomyocyte[J]. J Mol Cell Cardiol, 2018, 118: 122–132. doi: 10.1016/j.yjmcc.2018.03.014
    Chang JC, Lien CF, Lee WS, et al. Intermittent hypoxia prevents myocardial mitochondrial Ca2+ overload and cell death during ischemia/reperfusion: the role of reactive oxygen species[J]. Cells, 2019, 8(6): 564. doi: 10.3390/cells8060564
    Mrakic-Sposta S, Gussoni M, Dellanoce C, et al. Effects of acute and sub-acute hypobaric hypoxia on oxidative stress: a field study in the Alps[J]. Eur J Appl Physiol, 2021, 121(1): 297–306.
    Mallet RT, Burtscher J, Richalet JP, et al. Impact of high altitude on cardiovascular health: current perspectives[J]. Vasc Health Risk Manag, 2021, 17: 317–335. doi: 10.2147/VHRM.S294121
    Balková P, Hlaváčková M, Milerová M, et al. N-acetylcysteine treatment prevents the up-regulation of MnSOD in chronically hypoxic rat hearts[J]. Physiol Res, 2011, 60(3): 467–474.
    Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning[J]. Circ Res, 2015, 116(4): 674–699. doi: 10.1161/CIRCRESAHA.116.305348
    Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79: 351–379. doi: 10.1146/annurev-biochem-060308-103103
    McCreight JC, Schneider SE, Wilburn DB, et al. Evolution of microRNA in primates[J]. PLoS One, 2017, 12(6): e0176596. doi: 10.1371/journal.pone.0176596
    Tsibulnikov SY, Maslov LN, Gorbunov AS, et al. A review of humoral factors in remote preconditioning of the heart[J]. J Cardiovasc Pharmacol Ther, 2019, 24(5): 403–421. doi: 10.1177/1074248419841632
    Chen Y, Ye X, Yan F. MicroRNA 3113-5p is a novel marker for early cardiac ischemia/reperfusion injury[J]. Diagn Pathol, 2019, 14(1): 121. doi: 10.1186/s13000-019-0894-1
    He S, Liu P, Jian Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-Jun pathway[J]. Biochem Biophys Res Commun, 2013, 441(4): 763–769. doi: 10.1016/j.bbrc.2013.10.151
    Chen Q, Huang J, Wang H, et al. Effects of chronic intermittent hypoxia on regulation of miRNA-214 in myocardial apoptosis in rats[J]. Natl Med J China, 2015, 95(16): 1214–1217.
    Huang J, Li X, Li H, et al. Down-regulation of microRNA-184 contributes to the development of cyanotic congenital heart diseases[J]. Int J Clin Exp Pathol, 2015, 8(11): 14221–14227.
    Zhou Y, Jia W, Jian Z, et al. Downregulation of microRNA-199a-5p protects cardiomyocytes in cyanotic congenital heart disease by attenuating endoplasmic reticulum stress[J]. Mol Med Rep, 2017, 16(3): 2992–3000.
    He W, Che H, Jin C, et al. Effects of miR-23b on hypoxia-induced cardiomyocytes apoptosis[J]. Biomed Pharmacother, 2017, 96: 812–817. doi: 10.1016/j.biopha.2017.09.148
    Ren J, Liu W, Li G, et al. Atorvastatin attenuates myocardial hypertrophy induced by chronic intermittent hypoxia in vitro partly through miR-31/PKCε pathway[J]. Curr Med Sci, 2018, 38(3): 405–412. doi: 10.1007/s11596-018-1893-2
    Zhang K, Ma Z, Wang W, et al. Beneficial effects of tolvaptan on atrial remodeling induced by chronic intermittent hypoxia in rats[J]. Cardiovasc Ther, 2018, 36(6): e12466. doi: 10.1111/1755-5922.12466
    Santolini J. What does "NO-synthase" stand for ?[J]. Front Biosci, 2019, 24(1): 133–171. doi: 10.2741/4711
    Cohen MV, Downey JM. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future[J]. Br J Pharmacol, 2015, 172(8): 1913–1932.
    Ferreiro CR, Chagas ACP, Carvalho MHC, et al. Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease: a novel pathophysiological adaptive mechanism[J]. Circulation, 2001, 103(18): 2272–2276. doi: 10.1161/01.CIR.103.18.2272
    Grilli A, De Lutiis MA, Patruno A, et al. Inducible nitric oxide synthase and heme oxygenase-1 in rat heart: direct effect of chronic exposure to hypoxia[J]. Ann Clin Lab Sci, 2003, 33(2): 208–215.
    Jung F, Palmer LA, Zhou N, et al. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes[J]. Circ Res, 2000, 86(3): 319–325. doi: 10.1161/01.RES.86.3.319
    Rouet-Benzineb P, Eddahibi S, Raffestin B, et al. Induction of cardiac nitric oxide synthase 2 in rats exposed to chronic hypoxia[J]. J Mol Cell Cardiol, 1999, 31(9): 1697–1708. doi: 10.1006/jmcc.1999.1005
    Yuan X, Zhu D, Guo X, et al. Telmisartan attenuates myocardial apoptosis induced by chronic intermittent hypoxia in rats: modulation of nitric oxide metabolism and inflammatory mediators[J]. Sleep Breath, 2015, 19(2): 703–709. doi: 10.1007/s11325-014-1081-y
    Thompson LP, Dong Y. Chronic hypoxia decreases endothelial nitric oxide synthase protein expression in fetal guinea pig hearts[J]. J Soc Gynecol Investig, 2005, 12(6): 388–395. doi: 10.1016/j.jsgi.2005.04.011
    La Padula PH, Etchegoyen M, Czerniczyniec A, et al. Cardioprotection after acute exposure to simulated high altitude in rats. Role of nitric oxide[J]. Nitric Oxide, 2018, 73: 52–59. doi: 10.1016/j.niox.2017.12.007
    Felaco M, Grilli A, Gorbunov N, et al. Endothelial NOS expression and ischemia-reperfusion in isolated working rat heart from hypoxic and hyperoxic conditions[J]. Biochim Biophys Acta, 2000, 1524(2–3): 203–211.
    Forkel J, Chen X, Wandinger S, et al. Responses of chronically hypoxic rat hearts to ischemia: KATP channel blockade does not abolish increased RV tolerance to ischemia[J]. Am J Physiol Heart Circ Physiol, 2004, 286(2): H545–H551. doi: 10.1152/ajpheart.00022.2003
    Quing M, Görlach A, Schumacher K, et al. The hypoxia-inducible factor HIF-1 promotes intramyocardial expression of VEGF in infants with congenital cardiac defects[J]. Basic Res Cardiol, 2007, 102(3): 224–232. doi: 10.1007/s00395-007-0639-2
    Shi Y, Pritchard KA, Holman P, et al. Chronic myocardial hypoxia increases nitric oxide synthase and decreases caveolin-3[J]. Free Radic Biol Med, 2000, 29(8): 695–703. doi: 10.1016/S0891-5849(00)00364-6
    La Padula P, Bustamante J, Czerniczyniec A, et al. Time course of regression of the protection conferred by simulated high altitude to rat myocardium: correlation with mtNOS[J]. J Appl Physiol, 2008, 105(3): 951–957. doi: 10.1152/japplphysiol.90400.2008
    Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase[J]. Trends Pharmacol Sci, 2005, 26(4): 190–195. doi: 10.1016/j.tips.2005.02.005
    Thompson L, Dong Y, Evans L. Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts[J]. Pediatr Res, 2009, 65(2): 188–192. doi: 10.1203/PDR.0b013e31818d6ad0
    Milano G, Corno AF, Samaja M, et al. Daily reoxygenation decreases myocardial injury and improves post-ischaemic recovery after chronic hypoxia[J]. Eur J Cardiothorac Surg, 2010, 37(4): 942–949. doi: 10.1016/j.ejcts.2009.10.030
    Yu X, Ge L, Niu L, et al. The dual role of inducible nitric oxide synthase in myocardial ischemia/reperfusion injury: friend or foe?[J]. Oxid Med Cell Longev, 2018, 2018: 8364848.
    Baker JE, Holman P, Kalyanaraman B, et al. Adaptation to chronic hypoxia confers tolerance to subsequent myocardial ischemia by increased nitric oxide production[J]. Ann N Y Acad Sci, 1999, 874: 236–253. doi: 10.1111/j.1749-6632.1999.tb09239.x
    Earley S, Walker BR. Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction[J]. Am J Physiol Heart Circ Physiol, 2003, 284(5): H1655–H1661. doi: 10.1152/ajpheart.00964.2002
    Fitzpatrick CM, Shi Y, Hutchins WC, et al. Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels[J]. Am J Physiol Heart Circ Physiol, 2005, 288(1): H62–H68. doi: 10.1152/ajpheart.00701.2004
    Rafiee P, Shi Y, Kong X, et al. Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: role in cardioprotection[J]. Circulation, 2002, 106(2): 239–245. doi: 10.1161/01.CIR.0000022018.68965.6D
    Morel OE, Buvry A, Le Corvoisier P, et al. Effects of nifedipine-induced pulmonary vasodilatation on cardiac receptors and protein kinase C isoforms in the chronically hypoxic rat[J]. Pflugers Arch, 2003, 446(3): 356–364. doi: 10.1007/s00424-003-1034-y
    Naryzhnaya NV, Maslov IN, Khaliulin IG, et al. Chronic continuous nor-Mobaric hypoxia augments cell tolerance to anoxia (reoxyge-nation: the role of protein kinases[J]. Ross Fiziol Zh Im I M Sechenova (in Russian), 2016, 102(12): 1462–1471.
    El Alwani M, Usta J, Nemer G, et al. Regulation of the sphingolipid signaling pathways in the growing and hypoxic rat heart[J]. Prostaglandins Other Lipid Mediat, 2005, 78(1–4): 249–263.
    Hlaváčková M, Kožichová K, Neckář J, et al. Up-regulation and redistribution of protein kinase C-δ in chronically hypoxic heart[J]. Mol Cell Biochem, 2010, 345(1–2): 271–282.
    Hlavácková M, Neckár J, Jezková J, et al. Dietary polyunsaturated fatty acids alter myocardial protein kinase C expression and affect cardioprotection induced by chronic hypoxia[J]. Exp Biol Med, 2007, 232(6): 823–832.
    Su Z, Liu Y, Zhang H. Adaptive cardiac metabolism under chronic hypoxia: mechanism and clinical implications[J]. Front Cell Dev Biol, 2021, 9: 625524. doi: 10.3389/fcell.2021.625524
    de Miranda DC, de Oliveira Faria G, Hermidorff MM, et al. Pre- and post-conditioning of the heart: an overview of cardioprotective signaling pathways[J]. Curr Vasc Pharmacol, 2021, 19(5): 499–524. doi: 10.2174/1570161119666201120160619
    Micova P, Hahnova K, Hlavackova M, et al. Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation[J]. Mol Cell Biochem, 2016, 423(1–2): 151–163.
    Zeng C, Liang B, Jiang R, et al. Protein kinase C isozyme expression in right ventricular hypertrophy induced by pulmonary hypertension in chronically hypoxic rats[J]. Mol Med Rep, 2017, 16(4): 3833–3840. doi: 10.3892/mmr.2017.7098
    Ling H, Gray CBB, Zambon AC, et al. Ca2+/calmodulin-dependent protein kinase II δ mediates myocardial ischemia/reperfusion injury through nuclear factor-κB[J]. Circ Res, 2013, 112(6): 935–944. doi: 10.1161/CIRCRESAHA.112.276915
    Yang Y, Jiang K, Liu X, et al. CaMKII in regulation of cell death during myocardial reperfusion injury[J]. Front Mol Biosci, 2021, 8: 668129. doi: 10.3389/fmolb.2021.668129
    Zhao P, Pan J, Li F, et al. Effects of chronic hypoxia on the expression of calmodulin and calcicum/calmodulin-dependent protein kinase II and the calcium activity in myocardial cells in young rats[J]. Chin J Contemp Pediatr, 2008, 10(3): 381–385.
    Nehra S, Bhardwaj V, Kar S, et al. Chronic hypobaric hypoxia induces right ventricular hypertrophy and apoptosis in rats: therapeutic potential of nanocurcumin in improving adaptation[J]. High Alt Med Biol, 2016, 17(4): 342–352. doi: 10.1089/ham.2016.0032
    Xie Y, Zhu W, Zhu Y, et al. Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury[J]. Life Sci, 2004, 76(5): 559–572. doi: 10.1016/j.lfs.2004.09.017
    Gui L, Guo X, Zhang Z, et al. Activation of CaMKIIδA promotes Ca2+ leak from the sarcoplasmic reticulum in cardiomyocytes of chronic heart failure rats[J]. Acta Pharmacol Sin, 2018, 39(10): 1604–1612. doi: 10.1038/aps.2018.20
    Strnisková M, Ravingerová T, Neckár J, et al. Changes in the expression and/or activation of regulatory proteins in rat hearts adapted to chronic hypoxia[J]. Gen Physiol Biophys, 2006, 25(1): 25–41.
    Milano G, von Segesser LK, Morel S, et al. Phosphorylation of phosphatidylinositol-3-kinase-protein kinase B and extracellular signal-regulated kinases 1/2 mediate reoxygenation-induced cardioprotection during hypoxia[J]. Exp Biol Med, 2010, 235(3): 401–410. doi: 10.1258/ebm.2009.009153
    Ravingerová T, Matejíková J, Neckář J, et al. Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart[J]. Mol Cell Biochem, 2007, 297(1–2): 111–120.
    Jia W, Jian Z, Li J, et al. Upregulated ATF6 contributes to chronic intermittent hypoxia-afforded protection against myocardial ischemia/reperfusion injury[J]. Int J Mol Med, 2016, 37(5): 1199–1208. doi: 10.3892/ijmm.2016.2535
    Luo G, Jian Z, Ma R, et al. Melatonin alleviates hypoxia-induced cardiac apoptosis through PI3K/Akt pathway[J]. Int J Clin Exp Pathol, 2018, 11(12): 5840–5849.
    García-Niño WR, Zazueta C, Buelna-Chontal M, et al. Mitochondrial quality control in cardiac-conditioning strategies against ischemia-reperfusion injury[J]. Life (Basel), 2021, 11(11): 1123.
    Morel S, Milano G, Ludunge KM, et al. Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function: role of mitogen-activated protein kinase signaling pathways[J]. Basic Res Cardiol, 2006, 101(4): 336–345. doi: 10.1007/s00395-006-0596-1
    Milano G, Morel S, Bonny C, et al. A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo[J]. Am J Physiol Heart Circ Physiol, 2007, 292(4): H1828–H1835. doi: 10.1152/ajpheart.01117.2006
    Heidbreder M, Naumann A, Tempel K, et al. Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways[J]. Cardiovasc Res, 2008, 78(1): 108–115. doi: 10.1093/cvr/cvm114
    Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin[M]//Aggarwal BB, Surh YJ, Shishodia S. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. New York: Springer, 2007: 105–125.
    Li Q, Xiang Y, Chen Y, et al. Ginsenoside Rg1 protects cardiomyocytes against hypoxia/reoxygenation injury via activation of Nrf2/HO-1 signaling and inhibition of JNK[J]. Cell Physiol Biochem, 2017, 44(1): 21–37. doi: 10.1159/000484578
    He S, Liu S, Wu X, et al. Protective role of downregulated MLK3 in myocardial adaptation to chronic hypoxia[J]. J Physiol Biochem, 2016, 73(3): 371–380. doi: 10.1007/s13105-017-0561-5
    Zhao Y, An J, Yang S, et al. Hydrogen and oxygen mixture to improve cardiac dysfunction and myocardial pathological changes induced by intermittent hypoxia in rats[J]. Oxid Med Cell Longev, 2019, 2019: 7415212.
    Wagner C, Tillack D, Simonis G, et al. Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3β, and apoptosis[J]. Mol Cell Biochem, 2010, 339(1–2): 135–147.
    Li W, Zhu L, Ruan Z, et al. Nicotinamide protects chronic hypoxic myocardial cells through regulating mTOR pathway and inducing autophagy[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12): 5503–5511.
    Xie S, Liu W, Jin M, et al. Calcineurin suppresses cardiomyocyte-protective autophagy under chronic intermittent hypoxia by downregulating the AMPK pathway[EB/OL].https://www.preprints.org/manuscript/202106.0605/v1. Preprints 2021, 2021060605
    Wang J, Maimaitili Y, Zheng H, et al. The influence of rapamycin on the early cardioprotective effect of hypoxic preconditioning on cardiomyocytes[J]. Arch Med Sci, 2017, 13(4): 947–955.
    Gu S, Hua H, Guo X, et al. PGC-1α Participates in the protective effect of chronic intermittent hypobaric hypoxia on cardiomyocytes[J]. Cell Physiol Biochem, 2018, 50(5): 1891–1902. doi: 10.1159/000494869
    Zhang H, Liu B, Li T, et al. AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia[J]. Int J Mol Med, 2018, 41(1): 69–76.
    Miura T, Miki T. GSK-3β, a therapeutic target for cardiomyocyte protection[J]. Circ J, 2009, 73(7): 1184–1192. doi: 10.1253/circj.CJ-09-0284
    McCarthy J, Lochner A, Opie LH, et al. PKCε promotes cardiac mitochondrial and metabolic adaptation to chronic hypobaric hypoxia by GSK3β inhibition[J]. J Cell Physiol, 2011, 226(9): 2457–2468.
    Waskova-Arnostova P, Elsnicova B, Kasparova D, et al. Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria[J]. J Appl Physiol, 2015, 119(12): 1487–1493. doi: 10.1152/japplphysiol.01035.2014
    Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update[J]. Am J Physiol Heart Circ Physiol, 2003, 285(3): H921–H930.
    Grover GJ, Garlid KD. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology[J]. J Mol Cell Cardiol, 2000, 32(4): 677–695. doi: 10.1006/jmcc.2000.1111
    Peart JN, Gross GJ. Sarcolemmal and mitochondrial KATP channels and myocardial ischemic preconditioning[J]. J Cell Mol Med, 2002, 6(4): 453–464. doi: 10.1111/j.1582-4934.2002.tb00449.x
    Baker JE, Contney SJ, Gross GJ, et al. KATP channel activation in a rabbit model of chronic myocardial hypoxia[J]. J Mol Cell Cardiol, 1997, 29(2): 845–848. doi: 10.1006/jmcc.1996.0361
    Zhu Z, Burnett CM, Maksymov G, et al. Reduction in number of sarcolemmal KATP channels slows cardiac action potential duration shortening under hypoxia[J]. Biochem Biophys Res Commun, 2011, 415(4): 637–641. doi: 10.1016/j.bbrc.2011.10.125
    Crawford RM, Jovanović S, Budas GR, et al. Chronic mild hypoxia protects heart-derived H9c2 cells against acute hypoxia/reoxygenation by regulating expression of the SUR2A subunit of the ATP-sensitive K+ channel[J]. J Biol Chem, 2003, 278(33): 31444–31455. doi: 10.1074/jbc.M303051200
    Kolar F, Nekar J, Ostadal B, et al. Role of ATP-sensitive K+-channels in antiarrhythmic and cardioprotective action of adaptation to intermittent hypobaric hypoxia[J]. Bull Exp Biol Med, 2008, 145(4): 418–421. doi: 10.1007/s10517-008-0106-6
    Neckář J, Szárszoi O, Koten L, et al. Effects of mitochondrial KATP modulators on cardioprotection induced by chronic high altitude hypoxia in rats[J]. Cardiovasc Res, 2002, 55(3): 567–575. doi: 10.1016/S0008-6363(02)00456-X
    Lishmanov YB, Naryzhnaya NV, Tsibul’nikov SY, et al. Role of ATP-sensitive K+ channels in myocardial infarct size-limiting effect of chronic continuous normobaric hypoxia[J]. Bull Exp Biol Med, 2017, 163(1): 22–24. doi: 10.1007/s10517-017-3728-8
    Testai L, Rapposelli S, Martelli A, et al. Mitochondrial potassium channels as pharmacological target for cardioprotective drugs[J]. Med Res Rev, 2015, 35(3): 520–553. doi: 10.1002/med.21332
    Semenza GL. Pharmacologic targeting of hypoxia-inducible factors[J]. Annu Rev Pharmacol Toxicol, 2019, 59: 379–403. doi: 10.1146/annurev-pharmtox-010818-021637
    Li J, Zhou W, Chen W, et al. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post-conditioning[J]. Mol Med Rep, 2020, 21(3): 1527–1536.
    Lin C, Hsu KC, Huangfu W, et al. Investigating the potential effects of selective histone deacetylase 6 inhibitor ACY1215 on infarct size in rats with cardiac ischemia-reperfusion injury[J]. BMC Pharmacol Toxicol, 2020, 21(1): 21. doi: 10.1186/s40360-020-0400-0
    Wang Z, Zhang Z, Zhao J, et al. Polysaccharides from enteromorpha prolifera ameliorate acute myocardial infarction in vitro and in vivo via up-regulating HIF-1α[J]. Int Heart J, 2019, 60(4): 964–973. doi: 10.1536/ihj.18-519
    Wei Q, Bian Y, Yu F, et al. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model[J]. J Biomed Res, 2016, 30(6): 490–495.
    Sarkar FH, Li Y, Wang Z, et al. NF-κB signaling pathway and its therapeutic implications in human diseases[J]. Int Rev Immunol, 2008, 27(5): 293–319. doi: 10.1080/08830180802276179
    Morgan EN, Boyle EM, Yun W, et al. An essential role for NF-κB in the cardioadaptive response to ischemia[J]. Ann Thorac Surg, 1999, 68(2): 377–382. doi: 10.1016/S0003-4975(99)00646-3
    Yuan C, Wang H, Yuan Z. Ginsenoside Rg1 inhibits myocardial ischaemia and reperfusion injury via HIF-1 α-ERK signalling pathways in a diabetic rat model[J]. Pharmazie, 2019, 74(3): 157–162.
    Liu D, Zhang Y, Hu H, et al. Downregulation of microRNA-199a-5p attenuates hypoxia/reoxygenation-induced cytotoxicity in cardiomyocytes by targeting the HIF-1α-GSK3β-mPTP axis[J]. Mol Med Rep, 2019, 19(6): 5335–5344.
    Dong J, Xu M, Zhang W, et al. Effects of sevoflurane pretreatment on myocardial ischemia-reperfusion injury through the Akt/hypoxia-inducible factor 1-alpha (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway[J]. Med Sci Monit, 2019, 25: 3100–3107. doi: 10.12659/MSM.914265
    Jiang L, Zeng H, Ni L, et al. HIF-1α preconditioning potentiates antioxidant activity in ischemic injury: the role of sequential administration of dihydrotanshinone I and protocatechuic aldehyde in cardioprotection[J]. Antioxid Redox Signal, 2019, 31(3): 227–242. doi: 10.1089/ars.2018.7624
    Tranter M, Ren X, Forde T, et al. NF-κB driven cardioprotective gene programs; Hsp70.3 and cardioprotection after late ischemic preconditioning[J]. J Mol Cell Cardiol, 2010, 49(4): 664–672. doi: 10.1016/j.yjmcc.2010.07.001
    Wilhide ME, Tranter M, Ren X, et al. Identification of a NF-κB cardioprotective gene program: NF-κB regulation of Hsp70.1 contributes to cardioprotection after permanent coronary occlusion[J]. J Mol Cell Cardiol, 2011, 51(1): 82–89. doi: 10.1016/j.yjmcc.2011.03.011
    Stein AB, Bolli R, Dawn B, et al. Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium[J]. J Mol Cell Cardiol, 2012, 52(1): 228–236. doi: 10.1016/j.yjmcc.2011.11.005
    Qiao S, Xie H, Wang C, et al. Delayed anesthetic preconditioning protects against myocardial infarction via activation of nuclear factor-κB and upregulation of autophagy[J]. J Anesth, 2013, 27(2): 251–260. doi: 10.1007/s00540-012-1494-3
    Haar L, Ren X, Liu Y, et al. Acute consumption of a high-fat diet prior to ischemia-reperfusion results in cardioprotection through NF-κB-dependent regulation of autophagic pathways[J]. Am J Physiol Heart Circ Physiol, 2014, 307(12): H1705–H1713. doi: 10.1152/ajpheart.00271.2014
    Naryzhnaya NV, Maslov LN, Oeltgen PR. Pharmacology of mitochondrial permeability transition pore inhibitors[J]. Drug Dev Res, 2019, 80(8): 1013–1030. doi: 10.1002/ddr.21593
    Armstrong SC, Liu GS, Downey JM, et al. Potassium channels and preconditioning of isolated rabbit cardiomyocytes: effects of glyburide and pinacidil[J]. J Mol Cell Cardiol, 1995, 27(8): 1765–1774. doi: 10.1016/S0022-2828(95)90986-9
    Xu M, Wang Y, Ayub A, et al. Mitochondrial KATP channel activation reduces anoxic injury by restoring mitochondrial membrane potential[J]. Am J Physiol Heart Circ Physiol, 2001, 281(3): H1295–H1303. doi: 10.1152/ajpheart.2001.281.3.H1295
    Hausenloy DJ, Schulz R, Girao H, et al. Mitochondrial ion channels as targets for cardioprotection[J]. J Cell Mol Med, 2020, 24(13): 7102–7114. doi: 10.1111/jcmm.15341
    Ozcan C, Bienengraeber M, Dzeja PP, et al. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation[J]. Am J Physiol Heart Circ Physiol, 2002, 282(2): H531–H539. doi: 10.1152/ajpheart.00552.2001
    Ichinose M, Yonemochi H, Sato T, et al. Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress[J]. Am J Physiol Heart Circ Physiol, 2003, 284(6): H2235–H2241. doi: 10.1152/ajpheart.01073.2002
    Jung YS, Lee DH, Lim H, et al. KR-31378 protects cardiac H9c2 cells from chemical hypoxia-induced cell death via inhibition of JNK/p38 MAPK activation[J]. Jpn J Physiol, 2004, 54(6): 575–583. doi: 10.2170/jjphysiol.54.575
    Obata T, Yamanaka Y. Block of cardiac atp-sensitive K+ channels reduces hydroxyl radicals in the rat myocardium[J]. Arch Biochem Biophys, 2000, 378(2): 195–200. doi: 10.1006/abbi.2000.1830
    Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals[J]. Circ Res, 2000, 87(6): 460–466. doi: 10.1161/01.RES.87.6.460
    Carroll R, Gant VA, Yellon DM. Mitochondrial KATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation[J]. Cardiovasc Res, 2001, 51(4): 691–700. doi: 10.1016/S0008-6363(01)00330-3
    Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism[J]. Circ Res, 2001, 88(8): 802–809. doi: 10.1161/hh0801.089342
    Tsuchida A, Miura T, Tanno M, et al. Infarct size limitation by nicorandil: roles of mitochondrial KATP channels, sarcolemmal KATP channels, and protein kinase C[J]. J Am Coll Cardiol, 2002, 40(8): 1523–1530. doi: 10.1016/S0735-1097(02)02268-4
    Wang Y, Hirai K, Ashraf M. Activation of mitochondrial ATP-sensitive K+ channel for cardiac protection against ischemic injury is dependent on protein kinase C activity[J]. Circ Res, 1999, 85(8): 731–741. doi: 10.1161/01.RES.85.8.731
    Wang Y, Takashi E, Xu M, et al. Downregulation of protein kinase C inhibits activation of mitochondrial KATP channels by diazoxide[J]. Circulation, 2001, 104(1): 85–90. doi: 10.1161/01.CIR.104.1.85
    Tsukamoto O, Asanuma H, Kim J, et al. A role of opening of mitochondrial ATP-sensitive potassium channels in the infarct size-limiting effect of ischemic preconditioning via activation of protein kinase C in the canine heart[J]. Biochem Biophys Res Commun, 2005, 338(3): 1460–1466. doi: 10.1016/j.bbrc.2005.10.109
    Akao M, Teshima Y, Marbán E. Antiapoptotic effect of nicorandil mediated by mitochondrial atp-sensitive potassium channels in cultured cardiac myocytes[J]. J Am Coll Cardiol, 2002, 40(4): 803–810. doi: 10.1016/S0735-1097(02)02007-7
    Gao Q, Pan H, Qiu S, et al. Atractyloside and 5-hydroxydecanoate block the protective effect of puerarin in isolated rat heart[J]. Life Sci, 2006, 79(3): 217–224. doi: 10.1016/j.lfs.2005.12.040
    Gross ER, Hsu AK, Gross GJ. Delayed cardioprotection afforded by the glycogen synthase kinase 3 inhibitor SB-216763 occurs via a KATP- and MPTP-dependent mechanism at reperfusion[J]. Am J Physiol Heart Circ Physiol, 2008, 294(3): H1497–H1500. doi: 10.1152/ajpheart.01381.2007
    Bu H, Yang C, Wang M, et al. KATP channels and MPTP are involved in the cardioprotection bestowed by chronic intermittent hypobaric hypoxia in the developing rat[J]. J Physiol Sci, 2015, 65(4): 367–376. doi: 10.1007/s12576-015-0376-5
    Topsakal R, Eryol NK, Abacı A, et al. The relation between chronic obstructive pulmonary disease and coronary collateral vessels[J]. Angiology, 2005, 56(6): 651–656. doi: 10.1177/000331970505600601
    Tin'kov AN, Aksenov VA. Effects of intermittent hypobaric hypoxia on blood lipid concentrations in male coronary heart disease patients[J]. High Alt Med Biol, 2002, 3(3): 277–282. doi: 10.1089/152702902320604250
    del Pilar Valle M, García-Godos F, Woolcott OO, et al. Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia[J]. J Nucl Cardiol, 2006, 13(1): 69–74. doi: 10.1016/j.nuclcard.2005.11.008
    Syrkin AL, Glazachev OS, Kopylov FY, et al. Adaptation to intermittent hypoxia-hyperoxia in the rehabilitation of patients with ischemic heart disease: exercise tolerance and quality of life[J]. Kardiologiia (in Russian), 2017, 57(5): 10–16.
    Glazachev O, Kopylov P, Susta D, et al. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study[J]. Clin Cardiol, 2017, 40(6): 370–376. doi: 10.1002/clc.22670
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (176) PDF downloads(22) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint