Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 37 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Lan Ma, Haiyan Chu, Meilin Wang, Zhengdong Zhang. Biological functions and potential implications of circular RNAs[J]. The Journal of Biomedical Research, 2023, 37(2): 89-99. doi: 10.7555/JBR.36.20220095
Citation: Lan Ma, Haiyan Chu, Meilin Wang, Zhengdong Zhang. Biological functions and potential implications of circular RNAs[J]. The Journal of Biomedical Research, 2023, 37(2): 89-99. doi: 10.7555/JBR.36.20220095

Biological functions and potential implications of circular RNAs

doi: 10.7555/JBR.36.20220095
More Information
  • Corresponding author: Zhengdong Zhang, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86868423, E-mail: drzdzhang@njmu.edu.cn
  • Received: 2022-04-27
  • Revised: 2022-08-18
  • Accepted: 2022-08-30
  • Published: 2022-10-28
  • Issue Date: 2023-03-28
  • Circular RNAs (circRNAs) are characterized by a covalent closed-loop structure with an absence of both 5′ cap structure and 3′ polyadenylated tail. Numerous studies have found that circRNAs play an important role in various diseases and have a variety of biological regulatory mechanisms, including acting as microRNA sponges, interacting with proteins, modulating the expression of related genes and translating into peptides or proteins. CircRNAs have also been used as biomarkers for a number of diseases, which could improve clinical practice. This review summarizes the most recent advances in biogenesis and knowledge of the biological functions of circRNAs as well as the related bioinformatics databases. We specifically describe developments in understanding of circRNA functions in the field of environmental exposure-induced diseases. Finally, we focus on potential clinical implications of circRNAs to facilitate their clinical transformation into disease treatment.


  • CLC number: Q522, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852–3856. doi: 10.1073/pnas.73.11.3852
    Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis[J]. Cell, 1993, 73(5): 1019–1030. doi: 10.1016/0092-8674(93)90279-Y
    Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges[J]. Nat Rev Genet, 2016, 17(11): 679–692. doi: 10.1038/nrg.2016.114
    Huang J, Chen M, Xu K, et al. Microarray expression profile and functional analysis of circular RNAs in choroidal neovascularization[J]. J Biomed Res, 2019, 34(1): 67–74. doi: 10.7555/JBR.33.20190063
    Fang Z, Jiang C, Li S. The potential regulatory roles of circular RNAs in tumor immunology and immunotherapy[J]. Front Immunol, 2021, 11: 617583. doi: 10.3389/fimmu.2020.617583
    Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3): 188–206. doi: 10.1038/s41571-021-00585-y
    Mei X, Chen S. Circular RNAs in cardiovascular diseases[J]. Pharmacol Ther, 2022, 232: 107991. doi: 10.1016/j.pharmthera.2021.107991
    Li F, Yang Q, He AT, et al. Circular RNAs in cancer: limitations in functional studies and diagnostic potential[J]. Semin Cancer Biol, 2021, 75: 49–61. doi: 10.1016/j.semcancer.2020.10.002
    Hong W, Xue M, Jiang J, et al. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC)[J]. J Exp Clin Cancer Res, 2020, 39(1): 149. doi: 10.1186/s13046-020-01648-1
    Xu J, Wan Z, Tang M, et al. N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling[J]. Mol Cancer, 2020, 19(1): 163. doi: 10.1186/s12943-020-01281-8
    Zhang Y, Zhang X, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792–806. doi: 10.1016/j.molcel.2013.08.017
    Zhang X, Wang H, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134–147. doi: 10.1016/j.cell.2014.09.001
    Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256–264. doi: 10.1038/nsmb.2959
    Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations[J]. Cell, 2016, 165(2): 289–302. doi: 10.1016/j.cell.2016.03.020
    Vo JN, Cieslik M, Zhang Y, et al. The landscape of circular RNA in cancer[J]. Cell, 2019, 176(4): 869–881.e13. doi: 10.1016/j.cell.2018.12.021
    Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141–157. doi: 10.1261/rna.035667.112
    Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55–66. doi: 10.1016/j.molcel.2014.08.019
    Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production[J]. Genes Dev, 2014, 28(20): 2233–2247. doi: 10.1101/gad.251926.114
    Zhang X, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016, 26(9): 1277–1287. doi: 10.1101/gr.202895.115
    Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125–1134. doi: 10.1016/j.cell.2015.02.014
    Errichelli L, Dini Modigliani S, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons[J]. Nat Commun, 2017, 8: 14741. doi: 10.1038/ncomms14741
    Stagsted LVW, O'Leary ET, Ebbesen KK, et al. The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals[J]. Elife, 2021, 10: e63088. doi: 10.7554/eLife.63088
    Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals[J]. Cell Rep, 2015, 10(2): 170–177. doi: 10.1016/j.celrep.2014.12.019
    Eisenberg E, Levanon EY. A-to-I RNA editing-immune protector and transcriptome diversifier[J]. Nat Rev Genet, 2018, 19(8): 473–490. doi: 10.1038/s41576-018-0006-1
    Aktaş T, Avşar Ilık İ, Maticzka D, et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome[J]. Nature, 2017, 544(7648): 115–119. doi: 10.1038/nature21715
    Zheng X, Huang M, Xing L, et al. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer[J]. Mol Cancer, 2020, 19(1): 73. doi: 10.1186/s12943-020-01183-9
    Tang Z, Li X, Zhao J, et al. TRCirc: a resource for transcriptional regulation information of circRNAs[J]. Brief Bioinform, 2019, 20(6): 2327–2333. doi: 10.1093/bib/bby083
    Wang J, Zhang Y, Song H, et al. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway[J]. Mol Cancer, 2021, 20(1): 81. doi: 10.1186/s12943-021-01375-x
    Jiang T, Wang H, Liu L, et al. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer[J]. Mol Cancer, 2021, 20(1): 167. doi: 10.1186/s12943-021-01474-9
    Zhong Y, Du Y, Yang X, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression[J]. Mol Cancer, 2018, 17(1): 79. doi: 10.1186/s12943-018-0827-8
    Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675–691. doi: 10.1038/s41576-019-0158-7
    Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333–338. doi: 10.1038/nature11928
    Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J]. Science, 2017, 357(6357): eaam8526. doi: 10.1126/science.aam8526
    Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis[J]. Toxicol Sci, 2018, 166(2): 465–478. doi: 10.1093/toxsci/kfy221
    Wang J, Zhu M, Song J, et al. The circular RNA circTXNRD1 promoted ambient particulate matter-induced inflammation in human bronchial epithelial cells by regulating miR-892a/COX-2 axis[J]. Chemosphere, 2022, 286: 131614. doi: 10.1016/j.chemosphere.2021.131614
    Li M, Hua Q, Shao Y, et al. Circular RNA circBbs9 promotes PM2.5-induced lung inflammation in mice via NLRP3 inflammasome activation[J]. Environ Int, 2020, 143: 105976. doi: 10.1016/j.envint.2020.105976
    Zhou M, Li L, Chen B, et al. Circ-SHPRH suppresses cadmium-induced transformation of human bronchial epithelial cells by regulating QKI expression via miR-224–5p[J]. Ecotoxicol Environ Saf, 2021, 220: 112378. doi: 10.1016/j.ecoenv.2021.112378
    Dai X, Chen C, Yang Q, et al. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation[J]. Cell Death Dis, 2018, 9(5): 454. doi: 10.1038/s41419-018-0485-1
    Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503–3517. doi: 10.7150/thno.42174
    Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1): 87–97. doi: 10.1002/jnr.24356
    Wang Z, Lei X. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture[J]. Brief Bioinform, 2021, 22(6): bbab342. doi: 10.1093/bib/bbab342
    Du WW, Yang W, Li X, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy[J]. Oncogene, 2018, 37(44): 5829–5842. doi: 10.1038/s41388-018-0369-y
    Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017, 14(3): 361–369. doi: 10.1080/15476286.2017.1279788
    Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016, 44(6): 2846–2858. doi: 10.1093/nar/gkw027
    Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18): 1402–1412. doi: 10.1093/eurheartj/ehw001
    Chen R, Chen X, Xia L, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun, 2019, 10(1): 4695. doi: 10.1038/s41467-019-12651-2
    Jia Y, Li X, Nan A, et al. Circular RNA 406961 interacts with ILF2 to regulate PM2.5-induced inflammatory responses in human bronchial epithelial cells via activation of STAT3/JNK pathways[J]. Environ Int, 2020, 141: 105755. doi: 10.1016/j.envint.2020.105755
    Zhou Z, Jiang R, Yang X, et al. circRNA mediates silica-induced macrophage activation via HECTD1/ZC3H12A-dependent ubiquitination[J]. Theranostics, 2018, 8(2): 575–592. doi: 10.7150/thno.21648
    Bolisetty MT, Graveley BR. Circuitous route to transcription regulation[J]. Mol Cell, 2013, 51(6): 705–706. doi: 10.1016/j.molcel.2013.09.012
    Ma N, Pan J, Wen Y, et al. RETRACTED: circTulp4 functions in Alzheimer's disease pathogenesis by regulating its parental gene, Tulp4[J]. Mol Ther, 2021, 29(6): 2167–2181. doi: 10.1016/j.ymthe.2021.02.008
    Chen N, Zhao G, Yan X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1[J]. Genome Biol, 2018, 19(1): 218. doi: 10.1186/s13059-018-1594-y
    Gong X, Tian M, Cao N, et al. Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation[J]. J Clin Invest, 2021, 131(24): e147031. doi: 10.1172/JCI147031
    Wu N, Yuan Z, Du KY, et al. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery[J]. Cell Death Differ, 2019, 26(12): 2758–2773. doi: 10.1038/s41418-019-0337-2
    Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs[J]. Mol Cell, 2017, 66(1): 9–21.e7. doi: 10.1016/j.molcel.2017.02.021
    Wang Y, Wu C, Du Y, et al. Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas[J]. Mol Cancer, 2022, 21(1): 13. doi: 10.1186/s12943-021-01484-7
    Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22–37.e9. doi: 10.1016/j.molcel.2017.02.017
    Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma[J]. Nat Commun, 2018, 9(1): 4475. doi: 10.1038/s41467-018-06862-2
    Zhang M, Huang N, Yang X, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J]. Oncogene, 2018, 37(13): 1805–1814. doi: 10.1038/s41388-017-0019-9
    Meyer KD, Patil DP, Zhou J, et al. 5' UTR m6 A promotes cap-independent translation[J]. Cell, 2015, 163(4): 999–1010. doi: 10.1016/j.cell.2015.10.012
    Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626–641. doi: 10.1038/cr.2017.31
    Zhou J, Wan J, Gao X, et al. Dynamic m6A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526(7574): 591–594. doi: 10.1038/nature15377
    Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells[J]. Sci Rep, 2015, 5: 16435. doi: 10.1038/srep16435
    Liu Y, Li Z, Zhang M, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity[J]. Neuro Oncol, 2021, 23(5): 743–756. doi: 10.1093/neuonc/noaa279
    Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs[J]. RNA, 2014, 20(11): 1666–1670. doi: 10.1261/rna.043687.113
    Liu M, Wang Q, Shen J, et al. Circbank: a comprehensive database for circRNA with standard nomenclature[J]. RNA Biol, 2019, 16(7): 899–905. doi: 10.1080/15476286.2019.1600395
    Dong R, Ma X, Li G, et al. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison[J]. Genomics Proteomics Bioinformatics, 2018, 16(4): 226–233. doi: 10.1016/j.gpb.2018.08.001
    Xie F, Liu S, Wang J, et al. deepBase v3.0: expression atlas and interactive analysis of ncRNAs from thousands of deep-sequencing data[J]. Nucleic Acids Res, 2021, 49(D1): D877–D883. doi: 10.1093/nar/gkaa1039
    Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs[J]. RNA Biol, 2016, 13(1): 34–42. doi: 10.1080/15476286.2015.1128065
    Chen Y, Yao L, Tang Y, et al. CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers[J]. Nucleic Acids Res, 2022, 50(D1): D93–D101. doi: 10.1093/nar/gkab1036
    Wu W, Ji P, Zhao F. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes[J]. Genome Biol, 2020, 21(1): 101. doi: 10.1186/s13059-020-02018-y
    Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(Database issue): D92–D97. doi: 10.1093/nar/gkt1248.
    Chen X, Han P, Zhou T, et al. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations[J]. Sci Rep, 2016, 6: 34985. doi: 10.1038/srep34985
    Huang W, Ling Y, Zhang S, et al. TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence[J]. Nucleic Acids Res, 2021, 49(D1): D236–D242. doi: 10.1093/nar/gkaa823
    Li H, Xie M, Wang Y, et al. riboCIRC: a comprehensive database of translatable circRNAs[J]. Genome Biol, 2021, 22(1): 79. doi: 10.1186/s13059-021-02300-7
    Feng J, Chen W, Dong X, et al. CSCD2: an integrated interactional database of cancer-specific circular RNAs[J]. Nucleic Acids Res, 2022, 50(D1): D1179–D1183. doi: 10.1093/nar/gkab830
    Fan C, Lei X, Tie J, et al. CircR2Disease v2.0: an updated web server for experimentally validated circRNA-disease associations and its application[J]. Genomics Proteomics Bioinformatics, 2021, S1672-0229(21): 00246-1. doi: 10.1016/j.gpb.2021.10.002
    Zhang W, Liu Y, Min Z, et al. circMine: a comprehensive database to integrate, analyze and visualize human disease-related circRNA transcriptome[J]. Nucleic Acids Res, 2022, 50(D1): D83–D92. doi: 10.1093/nar/gkab809
    Ghosal S, Das S, Sen R, et al. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits[J]. Front Genet, 2013, 4: 283. doi: 10.3389/fgene.2013.00283
    Lai H, Li Y, Zhang H, et al. exoRBase 2.0: an atlas of mRNA, lncRNA and circRNA in extracellular vesicles from human biofluids[J]. Nucleic Acids Res, 2022, 50(D1): D118–D128. doi: 10.1093/nar/gkab1085
    Zhang P, Meng X, Chen H, et al. PlantCircNet: a database for plant circRNA-miRNA-mRNA regulatory networks[J]. Database, 2017, 2017: bax089. doi: 10.1093/database/bax089
    Wang S, Zhang K, Tan S, et al. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies[J]. Mol Cancer, 2021, 20(1): 13. doi: 10.1186/s12943-020-01298-z
    Li D, Li Z, Yang Y, et al. Circular RNAs as biomarkers and therapeutic targets in environmental chemical exposure-related diseases[J]. Environ Res, 2020, 180: 108825. doi: 10.1016/j.envres.2019.108825
    Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs[J]. Cell Death Differ, 2022, 29(3): 481–491. doi: 10.1038/s41418-022-00948-7
    Wang Y, Liu J, Ma J, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases[J]. Mol Cancer, 2019, 18(1): 116. doi: 10.1186/s12943-019-1041-z
    Li J, Zhang G, Liu CG, et al. The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy[J]. Theranostics, 2022, 12(1): 87–104. doi: 10.7150/thno.64096
    Zhou H, He X, He Y, et al. Exosomal circRNAs: emerging players in tumor metastasis[J]. Front Cell Dev Biol, 2021, 9: 786224. doi: 10.3389/fcell.2021.786224
    Yang Q, Li F, He AT, et al. Circular RNAs: expression, localization, and therapeutic potentials[J]. Mol Ther, 2021, 29(5): 1683–1702. doi: 10.1016/j.ymthe.2021.01.018
    Fan Z, Xiao T, Luo H, et al. A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics[J]. Environ Int, 2022, 163: 107223. doi: 10.1016/j.envint.2022.107223
    Fang S, Guo H, Cheng Y, et al. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1[J]. Cell Death Dis, 2018, 9(3): 396. doi: 10.1038/s41419-018-0432-1
    Yang X, Wang J, Zhou Z, et al. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation[J]. FASEB J, 2018, 32(6): 3264–3277. doi: 10.1096/fj.201701118R
    Cheng Z, Zhang Y, Wu S, et al. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis[J]. Ecotoxicol Environ Saf, 2022, 236: 113451. doi: 10.1016/j.ecoenv.2022.113451
    Roy S, Kanda M, Nomura S, et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer[J]. Mol Cancer, 2022, 21(1): 42. doi: 10.1186/s12943-022-01527-7
    Zheng R, Zhang K, Tan S, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction[J]. Mol Cancer, 2022, 21(1): 49. doi: 10.1186/s12943-021-01471-y
    Li J, Li Z, Jiang P, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis[J]. J Exp Clin Cancer Res, 2018, 37(1): 177. doi: 10.1186/s13046-018-0822-3
    Li J, Hu ZQ, Yu SY, et al. CircRPN2 Inhibits Aerobic Glycolysis and Metastasis in Hepatocellular Carcinoma[J]. Cancer Res, 2022, 82(6): 1055–1069. doi: 10.1158/0008-5472.CAN-21-1259
    Liang G, Ling Y, Mehrpour M, et al. Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression[J]. Mol Cancer, 2020, 19(1): 65. doi: 10.1186/s12943-020-01152-2
    He AT, Liu J, Li F, et al. Targeting circular RNAs as a therapeutic approach: current strategies and challenges[J]. Signal Transduct Target Ther, 2021, 6(1): 185. doi: 10.1038/s41392-021-00569-5
    Lavenniah A, Luu TDA, Li YP, et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy[J]. Mol Ther, 2020, 28(6): 1506–1517. doi: 10.1016/j.ymthe.2020.04.006
    Du A, Li S, Zhou Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. Mol Cancer, 2022, 21(1): 109. doi: 10.1186/s12943-022-01575-z
    Zhao Q, Liu J, Deng H, et al. Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output[J]. Cell, 2020, 183(1): 76–93.e22. doi: 10.1016/j.cell.2020.08.009
    Yang L, Han B, Zhang Z, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models[J]. Circulation, 2020, 142(6): 556–574. doi: 10.1161/CIRCULATIONAHA.120.045765
    Zhang D, Ni N, Wang Y, et al. CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression[J]. Cell Death Differ, 2021, 28(1): 283–302. doi: 10.1038/s41418-020-0600-6
    Hu K, Liu X, Li Y, et al. Exosomes mediated transfer of circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p[J]. Med Sci Monit, 2020, 26: e922253. doi: 10.12659/MSM.922253
    Qu L, Yi Z, Shen Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants[J]. Cell, 2022, 185(10): 1728–1744.e16. doi: 10.1016/j.cell.2022.03.044
    Gu J, Su C, Huang F, et al. Past, present and future: the relationship between circular RNA and immunity[J]. Front Immunol, 2022, 13: 894707. doi: 10.3389/fimmu.2022.894707
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (2439) PDF downloads(79) Cited by()
    Proportional views
    Relative Articles


    DownLoad:  Full-Size Img  PowerPoint