• ISSN 1674-8301
  • CN 32-1810/R
Volume 36 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Yuanyuan Wang, Liya Liu, Mingyan Lin. Psychiatric risk gene transcription factor 4 preferentially regulates cortical interneuron neurogenesis during early brain development[J]. The Journal of Biomedical Research, 2022, 36(4): 242-254. doi: 10.7555/JBR.36.20220074
Citation: Yuanyuan Wang, Liya Liu, Mingyan Lin. Psychiatric risk gene transcription factor 4 preferentially regulates cortical interneuron neurogenesis during early brain development[J]. The Journal of Biomedical Research, 2022, 36(4): 242-254. doi: 10.7555/JBR.36.20220074

Psychiatric risk gene transcription factor 4 preferentially regulates cortical interneuron neurogenesis during early brain development

doi: 10.7555/JBR.36.20220074
More Information
  • Corresponding author: Mingyan Lin, Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869432, E-mail: linmingyan@njmu.edu.cn
  • Received: 2022-04-05
  • Revised: 2022-05-31
  • Accepted: 2022-06-01
  • Published: 2022-07-28
  • Issue Date: 2022-07-28
  • Genetic variants within or near the transcription factor 4 gene (TCF4) are robustly implicated in psychiatric disorders including schizophrenia. However, the biological pleiotropy poses considerable obstacles to dissect the potential relationship between TCF4 and those highly heterogeneous diseases. Through integrative transcriptomic analysis, we demonstrated that TCF4 is preferentially expressed in cortical interneurons during early brain development. Therefore, disruptions of interneuron development might be the underlying contribution of TCF4 perturbation to a range of neurodevelopmental disorders. Here, we performed chromatin immunoprecipitation sequencing (ChIP-seq) of TCF4 on human medial ganglionic eminence-like organoids (hMGEOs) to identify genome-wide TCF4 binding sites, followed by integration of multi-omics data from human fetal brain. We observed preferential expression of the isoform TCF4-B over TCF4-A. De novo motif analysis found that the identified 5916 TCF4 binding sites are significantly enriched for the E-box sequence. The predicted TCF4 targets in general have positively correlated expression levels with TCF4 in the cortical interneurons, and are primarily involved in biological processes related to neurogenesis. Interestingly, we found that TCF4 interacts with non-bHLH proteins such as FOS/JUN, which may underlie the functional specificity of TCF4 in hMGEOs. This study highlights the regulatory role of TCF4 in interneuron development and provides compelling evidence to support the biological rationale linking TCF4 to the developing cortical interneuron and psychiatric disorders.


  • CLC number: R749.4, Document code: A
    The authors reported no conflict of interests.
    ρ These authors contributed equally to this work.
  • loading
  • [1]
    Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms[J]. Mol Cell Biol, 2000, 20(2): 429–440. doi: 10.1128/MCB.20.2.429-440.2000
    Jung M, Häberle BM, Tschaikowsky T, et al. Analysis of the expression pattern of the schizophrenia-risk and intellectual disability gene TCF4 in the developing and adult brain suggests a role in development and plasticity of cortical and hippocampal neurons[J]. Mol Autism, 2018, 9: 20. doi: 10.1186/s13229-018-0200-1
    Kennedy AJ, Rahn EJ, Paulukaitis BS, et al. Tcf4 regulates synaptic plasticity, DNA methylation, and memory function[J]. Cell Rep, 2016, 16(10): 2666–2685. doi: 10.1016/j.celrep.2016.08.004
    Teixeira JR, Szeto RA, Carvalho VMA, et al. Transcription factor 4 and its association with psychiatric disorders[J]. Transl Psychiatry, 2021, 11(1): 19. doi: 10.1038/s41398-020-01138-0
    Marín O, Rubenstein JLR. A long, remarkable journey: tangential migration in the telencephalon[J]. Nat Rev Neurosci, 2001, 2(11): 780–790. doi: 10.1038/35097509
    Mesman S, Bakker R, Smidt MP. Tcf4 is required for correct brain development during embryogenesis[J]. Mol Cell Neurosci, 2020, 106: 103502. doi: 10.1016/j.mcn.2020.103502
    Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y human neuroblastoma cell line[J]. J Vis Exp, 2016, (108): 53193. doi: 10.3791/53193
    Forrest MP, Hill MJ, Kavanagh DH, et al. The psychiatric risk gene Transcription factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability[J]. Schizophr Bull, 2018, 44(5): 1100–1110. doi: 10.1093/schbul/sbx164
    Xia H, Jahr FM, Kim NK, et al. Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk[J]. Hum Mol Genet, 2018, 27(18): 3246–3256. doi: 10.1093/hmg/ddy222
    Zhong S, Zhang S, Fan X, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex[J]. Nature, 2018, 555(7697): 524–528. doi: 10.1038/nature25980
    Fan X, Dong J, Zhong S, et al. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis[J]. Cell Res, 2018, 28(7): 730–745. doi: 10.1038/s41422-018-0053-3
    Liu Y, Liu H, Sauvey C, et al. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells[J]. Nat Protoc, 2013, 8(9): 1670–1679. doi: 10.1038/nprot.2013.106
    Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data[J]. Cell, 2019, 177(7): 1888–1902.e21. doi: 10.1016/j.cell.2019.05.031
    Landt SG, Marinov GK, Kundaje A, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia[J]. Genome Res, 2012, 22(9): 1813–1831. doi: 10.1101/gr.136184.111
    Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26(5): 589–595. doi: 10.1093/bioinformatics/btp698
    Rozowsky J, Euskirchen G, Auerbach RK, et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls[J]. Nat Biotechnol, 2009, 27(1): 66–75. doi: 10.1038/nbt.1518
    Ramírez F, Ryan DP, Grüning B, et al. deepTools2: a next generation web server for deep-sequencing data analysis[J]. Nucleic Acids Res, 2016, 44(W1): W160–W165. doi: 10.1093/nar/gkw257
    Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer[J]. Nat Biotechnol, 2011, 29(1): 24–26. doi: 10.1038/nbt.1754
    Yu G, Wang L, He Q. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization[J]. Bioinformatics, 2015, 31(14): 2382–2383. doi: 10.1093/bioinformatics/btv145
    McLean CY, Bristor D, Hiller M, et al. GREAT improves functional interpretation of cis-regulatory regions[J]. Nat Biotechnol, 2010, 28(5): 495–501. doi: 10.1038/nbt.1630
    Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities[J]. Mol Cell, 2010, 38(4): 576–589. doi: 10.1016/j.molcel.2010.05.004
    Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation, 2021, 2(3): 100141. doi: 10.1016/j.xinn.2021.100141
    Janky R, Verfaillie A, Imrichová H, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections[J]. PLoS Comput Biol, 2014, 10(7): e1003731. doi: 10.1371/journal.pcbi.1003731
    Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches[J]. Bioinformatics, 1998, 14(1): 48–54. doi: 10.1093/bioinformatics/14.1.48
    Ding J, Hu H, Li X. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data[J]. Nucleic Acids Res, 2014, 42(5): e35. doi: 10.1093/nar/gkt1288
    Fromer M, Pocklington AJ, Kavanagh DH, et al. De novo mutations in schizophrenia implicate synaptic networks[J]. Nature, 2014, 506(7487): 179–184. doi: 10.1038/nature12929
    Xiang Y, Tanaka Y, Patterson B, et al. Fusion of regionally specified hpsc-derived organoids models human brain development and interneuron migration[J]. Cell Stem Cell, 2017, 21(3): 383–398.e7. doi: 10.1016/j.stem.2017.07.007
    Yan L, Guo H, Hu B, et al. Epigenomic landscape of human fetal brain, heart, and liver[J]. J Biol Chem, 2016, 291(9): 4386–4398. doi: 10.1074/jbc.M115.672931
    Parnavelas JG, Anderson SA, Lavdas AA, et al. The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex[J]. Novartis Found Symp, 2000, 228: 129–139. doi: 10.1002/0470846631.ch10
    Nakajima K. GABAergic interneuron migration and the evolution of the neocortex[J]. Dev Growth Differ, 2012, 54(3): 366–372. doi: 10.1111/j.1440-169X.2012.01351.x
    Tau GZ, Peterson BS. Normal development of brain circuits[J]. Neuropsychopharmacology, 2010, 35(1): 147–168. doi: 10.1038/npp.2009.115
    Skene NG, Bryois J, Bakken TE, et al. Genetic identification of brain cell types underlying schizophrenia[J]. Nat Genet, 2018, 50(6): 825–833. doi: 10.1038/s41588-018-0129-5
    Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54–59. doi: 10.1038/nature22330
    Sepp M, Kannike K, Eesmaa A, et al. Functional diversity of human basic helix-loop-helix transcription factor tcf4 isoforms generated by alternative 5' exon usage and splicing[J]. PLoS One, 2011, 6(7): e22138. doi: 10.1371/journal.pone.0022138
    Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders[J]. Curr Mol Med, 2015, 15(2): 146–167. doi: 10.2174/1566524015666150303003028
    Wang P, Lin M, Pedrosa E, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment[J]. Mol Autism, 2015, 6(1): 55. doi: 10.1186/s13229-015-0048-6
    Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification of neural cell types[J]. Nat Revs Neurosci, 2002, 3(7): 517–530. doi: 10.1038/nrn874
    Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity[J]. Oncogene, 2001, 20(19): 2438–2452. doi: 10.1038/sj.onc.1204385
    Wittmann M-T, Katada S, Sock E, et al. scRNA sequencing uncovers a TCF4-dependent transcription factor network regulating commissure development in mouse[J]. Development, 2021, 148(14): dev196022. doi: 10.1242/dev.196022
  • JBR-2022-0074-supplementary.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (159) PDF downloads(15) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint