• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
François Barja. Bacterial nanocellulose production and biomedical applications[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.35.20210036
Citation: François Barja. Bacterial nanocellulose production and biomedical applications[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.35.20210036

Bacterial nanocellulose production and biomedical applications

doi: 10.7555/JBR.35.20210036
More Information
  • Corresponding author: François Barja, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211 Genève-4, Switzerland. Tel/Fax: +41-22-379-3754/+41-22-379-3753, E-mail: Francois.Barja@unige.ch
  • Received: 2021-03-02
  • Accepted: 2021-03-27
  • Published: 2021-05-14
  • Bacterial nanocellulose (BNC) is a homopolymer of β-1,4 linked glycose, which is synthesized by Acetobacter using simple culturing methods to allow inexpensive and environmentally friendly small- and large-scale production. Depending on the growth media and types of fermentation methods, ultra-pure cellulose can be obtained with different physio-chemical characteristics. Upon biosynthesis, bacterial cellulose is assembled in the medium into a nanostructured network of glucan polymers that are semitransparent, mechanically highly resistant, but soft and elastic, and with a high capacity to store water and exchange gasses. BNC, generally recognized as safe as well as one of the most biocompatible materials, has been found numerous medical applications in wound dressing, drug delivery systems, and implants of heart valves, blood vessels, tympanic membranes, bones, teeth, cartilages, cornea, and urinary tracts.


  • loading
  • [1]
    Brown Jr RM. Cellulose structure and biosynthesis: what is in store for the 21st century?[J]. J Polym Sci Part A Polym Chem, 2004, 42(3): 487–495. doi: 10.1002/pola.10877
    Allen H, Wei DH, Gu Y, et al. A historical perspective on the regulation of cellulose biosynthesis[J]. Carbohydr Polym, 2021, 252: 117022. doi: 10.1016/j.carbpol.2020.117022
    Tarchoun AF, Trache D, Klapötke TM. Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization[J]. Int J Biol Macromol, 2019, 138: 837–845. doi: 10.1016/j.ijbiomac.2019.07.176
    Lin SP, Loira Calvar I, Catchmark JM, et al. Biosynthesis, production and applications of bacterial cellulose[J]. Cellulose, 2013, 20(5): 2191–2219. doi: 10.1007/s10570-013-9994-3
    Sharma C, Bhardwaj NK. Bacterial nanocellulose: present status, biomedical applications and future perspectives[J]. Mater Sci Eng C, 2019, 104: 109963. doi: 10.1016/j.msec.2019.109963
    Keshk SM. Bacterial cellulose production and its industrial applications[J]. J Bioprocess Biotech, 2014, 4: 150. doi: 10.4172/2155-9821.1000150
    Lee YK, Buldum G, Mantalaris A, et al. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites[J]. Macromol Biosci, 2014, 14(1): 10–32. doi: 10.1002/mabi.201300298
    Moradali MF, Rehm BHA. Bacterial biopolymers: from pathogenesis to advanced materials[J]. Nat Rev Microbiol, 2020, 18(4): 195–210. doi: 10.1038/s41579-019-0313-3
    Acheson JF, Derewenda ZS, Zimmer J. Architecture of the cellulose synthase outer membrane channel and its association with the periplasmic TPR domain[J]. Structure, 2019, 27(12): 1855–1861. doi: 10.1016/j.str.2019.09.008
    Acheson JF, Derewenda Z, Zimmer J. RCSB PDB. 6TZK: bacterial cellulose synthase outermembrane channel BcsC with terminal TPR repeat[EB/OL]. [2019-10-23]. https://www.rcsb.org/structure/6TZK.
    Aleshina LA, Prusskii AI, Mikhailidi AM, et al. X-ray diffraction study of cellulose powders and their hydrogels. Computer modeling of the atomic structure[J]. Fibre Chem, 2018, 50(3): 166–175. doi: 10.1007/s10692-018-9954-7
    Zimmer J. RCSB PDB. 4HG6: structure of a cellulose synthase-cellulose translocation intermediate[EB/OL]. [2012-12-19]. https://www.rcsb.org/structure/4hg6.
    Morgan JLW, Strumillo J, Zimmer J. Crystallographic snapshot of cellulose synthesis and membrane translocation[J]. Nature, 2013, 493(7431): 181–186. doi: 10.1038/nature11744
    Tonouchi N. Cellulose and other capsular polysaccharides of acetic acid bacteria[M]//Matsushita K, Toyama H, Tonouchi N, et al. Acetic Acid Bacteria: Ecology and Physiology. Tokyo: Springer, 2016: 299–320.
    Brown AJ. XLIII. - on an acetic ferment which forms cellulose[J]. J Chem Soc Trans, 1886, 49(49): 432–439. https://pubs.rsc.org/en/content/articlelanding/1886/ct/ct8864900432#!divAbstract
    Czaja WK, Young DJ, Kawecki M, et al. The future prospects of microbial cellulose in biomedical applications[J]. Biomacromolecules, 2007, 8(1): 1–12. doi: 10.1021/bm060620d
    Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria[J]. Microbiol Rev, 1991, 55(1): 35–58. doi: 10.1128/MR.55.1.35-58.1991
    Ullah H, Wahid F, Santos HA, et al. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites[J]. Carbohydr Polym, 2016, 150: 330–352. doi: 10.1016/j.carbpol.2016.05.029
    Picheth GF, Pirich CL, Sierakowski MR, et al. Bacterial cellulose in biomedical applications: a review[J]. Int J Biol Macromol, 2017, 104: 97–106. doi: 10.1016/j.ijbiomac.2017.05.171
    Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose—a masterpiece of nature's arts[J]. J Mater Sci, 2000, 35(2): 261–270. doi: 10.1023/A:1004775229149
    Wang J, Tavakoli J, Tang YH. Bacterial cellulose production, properties and applications with different culture methods – A review[J]. Carbohydr Polym, 2019, 219: 63–76. doi: 10.1016/j.carbpol.2019.05.008
    Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid[J]. Nature, 1987, 325(6101): 279–281. doi: 10.1038/325279a0
    Saxena IM, Kudlicka K, Okuda K, et al. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization[J]. J Bacteriol, 1994, 176(18): 5735–5752. doi: 10.1128/JB.176.18.5735-5752.1994
    Wong HC, Fear AL, Calhoon RD, et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum[J]. Proc Natl Acad Sci U S A, 1990, 87(20): 8130–8134. doi: 10.1073/pnas.87.20.8130
    Standal R, Iversen TG, Coucheron DH, et al. A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon[J]. J Bacteriol, 1994, 176(3): 665–672. doi: 10.1128/JB.176.3.665-672.1994
    Saxena IM, Brown M. Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum[J]. J Bacteriol, 1995, 177(18): 5276–5283. doi: 10.1128/JB.177.18.5276-5283.1995
    Deng Y, Nagachar N, Xiao CW, et al. Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis[J]. J Bacteriol, 2013, 195(22): 5072–5083. doi: 10.1128/JB.00767-13
    Czaja W, Romanovicz D, Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture[J]. Cellulose, 2004, 11(3-4): 403–411. doi: 10.1023/B:CELL.0000046412.11983.61
    Jahan F, Kumar V, Rawat G, et al. Production of microbial cellulose by a bacterium isolated from fruit[J]. Appl Biochem Biotechnol, 2012, 167(5): 1157–1171. doi: 10.1007/s12010-012-9595-x
    Dubey S, Singh J, Singh RP. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation[J]. Bioresour Technol, 2018, 247: 73–80. doi: 10.1016/j.biortech.2017.09.089
    Chao YP, Sugano Y, Kouda T, et al. Production of bacterial cellulose by Acetobacter xylinumwith an air-lift reactor[J]. Biotechnol Tech, 1997, 11(11): 829–832. doi: 10.1023/A:1018433526709
    Wu SC, Li MH. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus[J]. J Biosci Bioeng, 2015, 120(4): 444–449. doi: 10.1016/j.jbiosc.2015.02.018
    Lucchesi C, Ferreira BMP, Duek EAR, et al. Increased response of Vero cells to PHBV matrices treated by plasma[J]. J Mater Sci Mater Med, 2008, 19(2): 635–643. doi: 10.1007/s10856-007-0169-3
    Boateng JS, Matthews KH, Stevens HNE, et al. Wound healing dressings and drug delivery systems: a review[J]. J Pharm Sci, 2008, 97(8): 2892–2923. doi: 10.1002/jps.21210
    Czaja W, Krystynowicz A, Bielecki S, et al. Microbial cellulose—The natural power to heal wounds[J]. Biomaterials, 2006, 27(2): 145–151. doi: 10.1016/j.biomaterials.2005.07.035
    Fontana JD, De Souza AM, Fontana CK, et al. Acetobacter cellulose pellicle as a temporary skin substitute[J]. Appl Biochem Biotechnol, 1990, 24-25: 253–264. doi: 10.1007/BF02920250
    Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing[J]. Carbohydr Polym, 2008, 72(1): 43–51. doi: 10.1016/j.carbpol.2007.07.025
    Abeer MM, Mohd Amin MCI, Martin C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects[J]. J Pharm Pharmacol, 2014, 66(8): 1047–1061. doi: 10.1111/jphp.12234
    Gonçalves S, Padrão J, Rodrigues IP, et al. Bacterial cellulose as a support for the growth of retinal pigment epithelium[J]. Biomacromolecules, 2015, 16(4): 1341–1351. doi: 10.1021/acs.biomac.5b00129
    Wang W, Li HY, Zhang DW, et al. Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite[J]. Electroanalysis, 2010, 22(21): 2543–2550. doi: 10.1002/elan.201000235
    Patchan MW, Chae JJ, Lee JD, et al. Evaluation of the biocompatibility of regenerated cellulose hydrogels with high strength and transparency for ocular applications[J]. J Biomater Appl, 2016, 30(7): 1049–1059. doi: 10.1177/0885328215616273
    Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose—Artificial blood vessels for microsurgery[J]. Prog Polym Sci, 2001, 26(9): 1561–1603. doi: 10.1016/S0079-6700(01)00021-1
    Schumann DA, Wippermann J, Klemm DO, et al. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes[J]. Cellulose, 2009, 16(5): 877–885. doi: 10.1007/s10570-008-9264-y
    Fink H, Faxälv L, Molnár GF, et al. Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials[J]. Acta Biomater, 2010, 6(3): 1125–1130. doi: 10.1016/j.actbio.2009.09.019
    Silveira FCA, Cristina F, Pinto M, et al. Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial[J]. Braz J Otorhinolaryngol, 2016, 82(2): 203–208. doi: 10.1016/j.bjorl.2015.03.015
    Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage[J]. Biomaterials, 2005, 26(4): 419–431. doi: 10.1016/j.biomaterials.2004.02.049
    Torgbo S, Sukyai P. Bacterial cellulose-based scaffold materials for bone tissue engineering[J]. Appl Mater Today, 2018, 11: 34–49. doi: 10.1016/j.apmt.2018.01.004
    Zaborowska M, Bodin A, Bäckdahl H, et al. Microporous bacterial cellulose as a potential scaffold for bone regeneration[J]. Acta Biomater, 2010, 6(7): 2540–2547. doi: 10.1016/j.actbio.2010.01.004
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (34) PDF downloads(8) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint