Citation: | Gheorghiu Mihaela. A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis[J]. The Journal of Biomedical Research, 2021, 35(4): 255-263. doi: 10.7555/JBR.34.20200128 |
[1] |
Gui QY, Lawson T, Shan SY, et al. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics[J]. Sensors, 2017, 17(7): 1623. doi: 10.3390/s17071623
|
[2] |
Turner APF. Biosensors: sense and sensibility[J]. Chem Soc Rev, 2013, 42(8): 3184–3196. doi: 10.1039/c3cs35528d
|
[3] |
Goode JA, Rushworth JVH, Millner PA. Biosensor regeneration: a review of common techniques and outcomes[J]. Langmuir, 2015, 31(23): 6267–6276. doi: 10.1021/la503533g
|
[4] |
Liu QJ, Wu CS, Cai H, et al. Cell-based biosensors and their application in biomedicine[J]. Chem Rev, 2014, 114(12): 6423–6461. doi: 10.1021/cr2003129
|
[5] |
Brown JP, Lynch BS, Curry-Chisolm IM, et al. Assaying spontaneous network activity and cellular viability using multi-well microelectrode arrays[J]. Methods Mol Biol, 2017, 1601: 153–170. doi: 10.1007/978-1-4939-6960-9_13
|
[6] |
Xie MQ, Fussenegger M. Designing cell function: assembly of synthetic gene circuits for cell biology applications[J]. Nat Rev Mol Cell Biol, 2018, 19(8): 507–525. doi: 10.1038/s41580-018-0024-z
|
[7] |
Sedlmayer F, Aubel D, Fussenegger M. Synthetic gene circuits for the detection, elimination and prevention of disease[J]. Nat Biomed Eng, 2018, 2(6): 399–415. doi: 10.1038/s41551-018-0215-0
|
[8] |
Gupta N, Renugopalakrishnan V, Liepmann D, et al. Cell-based biosensors: recent trends, challenges and future perspectives[J]. Biosens Bioelectron, 2019, 141: 111435. doi: 10.1016/j.bios.2019.111435
|
[9] |
Hicks M, Bachmann TT, Wang BJ. Synthetic biology enables programmable cell-based biosensors[J]. ChemPhysChem, 2020, 21(2): 131. doi: 10.1002/cphc.201901191
|
[10] |
Wegener J, Keese CR, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces[J]. Exp Cell Res, 2000, 259(1): 158–166. doi: 10.1006/excr.2000.4919
|
[11] |
Hafner F. Cytosensor® microphysiometer: technology and recent applications[J]. Biosens Bioelectron, 2000, 15(3-4): 149–158. doi: 10.1016/S0956-5663(00)00069-5
|
[12] |
Asphahani F, Thein M, Veiseh O, et al. Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors[J]. Biosens Bioelectron, 2008, 23(8): 1307–1313. doi: 10.1016/j.bios.2007.11.021
|
[13] |
Ghenim L, Kaji H, Hoshino Y, et al. Monitoring impedance changes associated with motility and mitosis of a single cell[J]. Lab Chip, 2010, 10(19): 2546–2550. doi: 10.1039/c004115g
|
[14] |
Giaever I, Keese CR. Micromotion of mammalian cells measured electrically[J]. Proc Natl Acad Sci USA, 1991, 88(17): 7896–7900. doi: 10.1073/pnas.88.17.7896
|
[15] |
Han A, Yang L, Frazier AB. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy[J]. Clin Cancer Res, 2007, 13(1): 139–143. doi: 10.1158/1078-0432.CCR-06-1346
|
[16] |
Hong J, Jiang DM, Gu CL, et al. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study[J]. Analyst, 2011, 136(2): 237–245. doi: 10.1039/C0AN00560F
|
[17] |
Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia[J]. Ann N Y Acad Sci, 1999, 873(1): 65–71. doi: 10.1111/j.1749-6632.1999.tb09450.x
|
[18] |
Schwarz M, Jendrusch M, Constantinou I. Spatially resolved electrical impedance methods for cell and particle characterization[J]. Electrophoresis, 2020, 41(1–2): 65–80. doi: 10.1002/elps.201900286
|
[19] |
Wei XW, Gu CL, Li HB, et al. Efficacy and cardiotoxicity integrated assessment of anticancer drugs by a dual functional cell-based biosensor[J]. Sens Actuators B: Chem, 2019, 283: 881–889. doi: 10.1016/j.snb.2018.12.085
|
[20] |
Pan YX, Jiang DM, Gu CL, et al. 3D microgroove electrical impedance sensing to examine 3D cell cultures for antineoplastic drug assessment[J]. Microsyst Nanoeng, 2020, 6(1): 23. doi: 10.1038/s41378-020-0130-x
|
[21] |
Stanica L, Rosu-Hamzescu M, Gheorghiu M, et al. Electric cell-substrate impedance sensing of cellular effects under hypoxic conditions and carbonic anhydrase inhibition[J]. J Sens, 2017, 2017: 9290478. doi: 10.1155/2017/9290478
|
[22] |
Stanica L, Gheorghiu M, Stan M, et al. Quantitative assessment of specific carbonic anhydrase inhibitors effect on hypoxic cells using electrical impedance assays[J]. J Enzyme Inhib Med Chem, 2017, 32(1): 1079–1090. doi: 10.1080/14756366.2017.1355306
|
[23] |
Munteanu RE, Stǎnicǎ L, Gheorghiu M, et al. Measurement of the extracellular pH of adherently growing mammalian cells with high spatial resolution using a voltammetric pH microsensor[J]. Anal Chem, 2018, 90(11): 6899–6905. doi: 10.1021/acs.analchem.8b01124
|
[24] |
Bondarenko A, Cortés-Salazar F, Gheorghiu M, et al. Electrochemical push-pull probe: from scanning electrochemical microscopy to multimodal altering of cell microenvironment[J]. Anal Chem, 2015, 87(8): 4479–4486. doi: 10.1021/acs.analchem.5b00455
|
[25] |
Gáspár S, David S, Polonschii C, et al. Simultaneous impedimetric and amperometric interrogation of renal cells exposed to a calculus-forming salt[J]. Anal Chim Acta, 2012, 713: 115–120. doi: 10.1016/j.aca.2011.11.031
|
[26] |
Gheorghiu E. Characterizing cellular systems by means of dielectric spectroscopy[J]. Bioelectromagnetics, 1996, 17(6): 475–482. doi: 10.1002/(SICI)1521-186X(1996)17:6<475::AID-BEM7>3.0.CO;2-0
|
[27] |
Asami K, Gheorghiu E, Yonezawa T. Real-time monitoring of yeast cell division by dielectric spectroscopy[J]. Biophys J, 1999, 76(6): 3345–3348. doi: 10.1016/S0006-3495(99)77487-4
|
[28] |
Gheorghiu E, Balut C, Gheorghiu M. Dielectric behaviour of gap junction connected cells: a microscopic approach[J]. Phys Med Biol, 2002, 47(2): 341–348. doi: 10.1088/0031-9155/47/2/312
|
[29] |
Gheorghiu M, David S, Polonschii C, et al. Label free sensing platform for amyloid fibrils effect on living cells[J]. Biosens Bioelectron, 2014, 52: 89–97. doi: 10.1016/j.bios.2013.08.028
|
[30] |
Gheorghiu M, Enciu AM, Popescu BO, et al. Functional and molecular characterization of the effect of amyloid-β42 on an in vitro epithelial barrier model[J]. J Alzheimers Dis, 2014, 38(4): 787–798. doi: 10.3233/JAD-122374
|
[31] |
Peter B, Ungai-Salanki R, Szabó B, et al. High-resolution adhesion kinetics of EGCG-exposed tumor cells on biomimetic interfaces: comparative monitoring of cell viability using label-free biosensor and classic end-point assays[J]. ACS Omega, 2018, 3(4): 3882–3891. doi: 10.1021/acsomega.7b01902
|
[32] |
Dinca V, Zaharie-Butucel D, Stanica L, et al. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme[J]. Colloids Surf B, 2018, 162: 98–107. doi: 10.1016/j.colsurfb.2017.11.058
|
[33] |
Cheng MS, Lau SH, Chan KP, et al. Impedimetric cell-based biosensor for real-time monitoring of cytopathic effects induced by dengue viruses[J]. Biosens Bioelectron, 2015, 70: 74–80. doi: 10.1016/j.bios.2015.03.018
|
[34] |
Selvam AP, Wangzhou AD, Jacobs M, et al. Development and validation of an impedance biosensor for point-of-care detection of vascular cell adhesion molecule-1 toward lupus diagnostics[J]. Future Sci OA, 2017, 3(3): FSO224. doi: 10.4155/fsoa-2017-0047
|
[35] |
Pan YX, Hu N, Wei XW, et al. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing[J]. Biosens Bioelectron, 2019, 130: 344–351. doi: 10.1016/j.bios.2018.09.046
|
[36] |
Mohammadi S, Nikkhah M, Hosseinkhani S. Investigation of the effects of carbon-based nanomaterials on A53T alpha-synuclein aggregation using a whole-cell recombinant biosensor[J]. Int J Nanomedicine, 2017, 12: 8831–8840. doi: 10.2147/IJN.S144764
|
[37] |
Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges[J]. Electroanalysis, 2007, 19(12): 1239–1257. doi: 10.1002/elan.200603855
|
[38] |
Gheorghiu M, Stănică L, Tegla MGG, et al. Cellular sensing platform with enhanced sensitivity based on optogenetic modulation of cell homeostasis[J]. Biosens Bioelectron, 2020, 154: 112003. doi: 10.1016/j.bios.2019.112003
|
[39] |
Gheorghiu M, Stanica L, Polonschii C, et al. Modulation of cellular reactivity for enhanced cell-based biosensing[J]. Anal Chem, 2020, 92(1): 806–814. doi: 10.1021/acs.analchem.9b03217
|
[40] |
Airan RD, Thompson KR, Fenno LE, et al. Temporally precise in vivo control of intracellular signalling[J]. Nature, 2009, 458(7241): 1025–1029. doi: 10.1038/nature07926
|
[41] |
Mattis J, Tye KM, Ferenczi EA, et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins[J]. Nat Methods, 2012, 9(2): 159–172. doi: 10.1038/nmeth.1808
|
[42] |
Tischer D, Weiner OD. Illuminating cell signalling with optogenetic tools[J]. Nat Rev Mol Cell Biol, 2014, 15(8): 551–558. doi: 10.1038/nrm3837
|
[43] |
Zhang F, Vierock J, Yizhar O, et al. The microbial opsin family of optogenetic tools[J]. Cell, 2011, 147(7): 1446–1457. doi: 10.1016/j.cell.2011.12.004
|
[44] |
Charlton FW, Pearson HM, Hover S, et al. Ion channels as therapeutic targets for viral infections: further discoveries and future perspectives[J]. Viruses, 2020, 12(8): 844. doi: 10.3390/v12080844
|
[45] |
Nieva JL, Madan V, Carrasco L. Viroporins: structure and biological functions[J]. Nat Rev Microbiol, 2012, 10(8): 563–574. doi: 10.1038/nrmicro2820
|
[46] |
Sundelacruz S, Levin M, Kaplan DL. Role of membrane potential in the regulation of cell proliferation and differentiation[J]. Stem Cell Rev Rep, 2009, 5(3): 231–246. doi: 10.1007/s12015-009-9080-2
|
[47] |
Mavrikou S, Moschopoulou G, Tsekouras V, et al. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen[J]. Sensors, 2020, 20(11): 3121. doi: 10.3390/s20113121
|
[48] |
Ausländer S, Fussenegger M. Engineering gene circuits for mammalian cell-based applications[J]. Cold Spring Harb Perspect Biol, 2016, 8(7): a023895. doi: 10.1101/cshperspect.a023895
|
[49] |
Derick S, Gironde C, Perio P, et al. LUCS (Light-Up Cell System), a universal high throughput assay for homeostasis evaluation in live cells[J]. Sci Rep, 2017, 7(1): 18069. doi: 10.1038/s41598-017-18211-2
|
[50] |
Ambrosi CM, Boyle PM, Chen K, et al. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability[J]. Sci Rep, 2015, 5(1): 17350. doi: 10.1038/srep17350
|
[51] |
Hofmann U, Michaelis S, Winckler T, et al. A whole-cell biosensor as in vitro alternative to skin irritation tests[J]. Biosens Bioelectron, 2013, 39(1): 156–162. doi: 10.1016/j.bios.2012.07.075
|
[52] |
Apostolou T, Moschopoulou G, Kolotourou E, et al. Assessment of in vitro dopamine-neuroblastoma cell interactions with a bioelectric biosensor: perspective for a novel in itro functional assay for dopamine agonist/antagonist activity[J]. Talanta, 2017, 170: 69–73. doi: 10.1016/j.talanta.2017.03.098
|
[53] |
Kojima R, Aubel D, Fussenegger M. Building sophisticated sensors of extracellular cues that enable mammalian cells to work as "doctors" in the body[J]. Cell Mol Life Sci, 2020, 77(18): 3567–3581. doi: 10.1007/s00018-020-03486-y
|
[54] |
Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy[J]. Bioconjugate Chem, 2011, 22(10): 1879–1903. doi: 10.1021/bc200151q
|
[55] |
Belkin S. Microbial whole-cell sensing systems of environmental pollutants[J]. Curr Opin Microbiol, 2003, 6(3): 206–212. doi: 10.1016/S1369-5274(03)00059-6
|
[56] |
Banerjee P, Bhunia AK. Mammalian cell-based biosensors for pathogens and toxins[J]. Trends Biotechnol, 2009, 27(3): 179–188. doi: 10.1016/j.tibtech.2008.11.006
|
[57] |
Yang XY, Her J, Bashor CJ. Mammalian signaling circuits from bacterial parts[J]. Nat Chem Biol, 2020, 16(2): 110–111. doi: 10.1038/s41589-019-0436-x
|
[58] |
Schwarz KA, Daringer NM, Dolberg TB, et al. Rewiring human cellular input-output using modular extracellular sensors[J]. Nat Chem Biol, 2017, 13(2): 202–209. doi: 10.1038/nchembio.2253
|
[59] |
Vasilescu A, Purcarea C, Popa E, et al. Versatile SPR aptasensor for detection of lysozyme dimer in oligomeric and aggregated mixtures[J]. Biosens Bioelectron, 2016, 83: 353–360. doi: 10.1016/j.bios.2016.04.080
|
[60] |
Donahue PS, Draut JW, Muldoon JJ, et al. The COMET toolkit for composing customizable genetic programs in mammalian cells[J]. Nat Commun, 2020, 11(1): 779. doi: 10.1038/s41467-019-14147-5
|
[61] |
Bakhshpour M, Piskin AK, Yavuz H, et al. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor[J]. Talanta, 2019, 204: 840–845. doi: 10.1016/j.talanta.2019.06.060
|
[62] |
Chiu CH, Lei KF, Yeh WL, et al. Comparison between xCELLigence biosensor technology and conventional cell culture system for real-time monitoring human tenocytes proliferation and drugs cytotoxicity screening[J]. J Orthop Surg Res, 2017, 12(1): 149. doi: 10.1186/s13018-017-0652-6
|
[63] |
Siska EK, Weisman I, Romano J, et al. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring[J]. PLoS One, 2017, 12(9): e0185498. doi: 10.1371/journal.pone.0185498
|
[64] |
Bernhard K, Stahl C, Martens R, et al. A novel genetically encoded single use sensory cellular test system measures bicarbonate concentration changes in living cells[J]. Sensors, 2020, 20(6): 1570. doi: 10.3390/s20061570
|
[65] |
Ma RL, Zheng HZ, Liu Q, et al. Exploring the interactions between engineered nanomaterials and immune cells at 3D nano-bio interfaces to discover potent nano-adjuvants[J]. Nanomed Nanotechnol Biol Med, 2019, 21: 102037. doi: 10.1016/j.nano.2019.102037
|
[66] |
Snyder RA, Ellison CK, Severin GB, et al. Surface sensing stimulates cellular differentiation in Caulobacter crescentus[J]. Proc Natl Acad Sci USA, 2020, 117(30): 17984–17991. doi: 10.1073/pnas.1920291117
|
[67] |
Stanley SA, Sauer J, Kane RS, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles[J]. Nat Med, 2015, 21(1): 92–98. doi: 10.1038/nm.3730
|
[68] |
Mansouri M, Strittmatter T, Fussenegger M. Light-controlled mammalian cells and their therapeutic applications in synthetic biology[J]. Adv Sci, 2019, 6(1): 1800952. doi: 10.1002/advs.201800952
|
[69] |
Ye HF, Fussenegger M. Optogenetic medicine: synthetic therapeutic solutions precision-guided by light[J]. Cold Spring Harb Perspect Med, 2019, 9(9): a034371. doi: 10.1101/cshperspect.a034371
|
[70] |
Shao JW, Xue S, Yu GL, et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice[J]. Sci Transl Med, 2017, 9(387): eaal2298. doi: 10.1126/scitranslmed.aal2298
|
[71] |
Li GX, Wang FF, Yang WG, et al. Development of an image biosensor based on an optogenetically engineered cell for visual prostheses[J]. Nanoscale, 2019, 11(28): 13213–13218. doi: 10.1039/C9NR01688K
|
[72] |
Daringer NM, Dudek RM, Schwarz KA, et al. Modular extracellular sensor architecture for engineering mammalian cell-based devices[J]. ACS Synth Biol, 2014, 3(12): 892–902. doi: 10.1021/sb400128g
|
[73] |
Jeon H, Lee E, Kim D, et al. Cell-based biosensors based on intein-mediated protein engineering for detection of biologically active signaling molecules[J]. Anal Chem, 2018, 90(16): 9779–9786. doi: 10.1021/acs.analchem.8b01481
|
[74] |
Hoffman T, Antovski P, Tebon P, et al. Synthetic biology and tissue engineering: toward fabrication of complex and smart cellular constructs[J]. Adv Funct Mater, 2020, 30(26): 1909882. doi: 10.1002/adfm.201909882
|
[75] |
Matsunaga S, Jeremiah SS, Miyakawa K, et al. Engineering cellular biosensors with customizable antiviral responses targeting hepatitis B virus[J]. iScience, 2020, 23(3): 100867. doi: 10.1016/j.isci.2020.100867
|
[76] |
Xie MQ, Ye HF, Wang H, et al. β-cell-mimetic designer cells provide closed-loop glycemic control[J]. Science, 2016, 354(6317): 1296–1301. doi: 10.1126/science.aaf4006
|
[77] |
Scheller L, Fussenegger M. From synthetic biology to human therapy: engineered mammalian cells[J]. Curr Opin Biotechnol, 2019, 58: 108–116. doi: 10.1016/j.copbio.2019.02.023
|
[78] |
Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor[J]. Science, 2015, 350(6258): aab4077. doi: 10.1126/science.aab4077
|