Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 34 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Guan Jinxing, Wei Yongyue, Zhao Yang, Chen Feng. Modeling the transmission dynamics of COVID-19 epidemic: a systematic review[J]. The Journal of Biomedical Research, 2020, 34(6): 422-430. doi: 10.7555/JBR.34.20200119
Citation: Guan Jinxing, Wei Yongyue, Zhao Yang, Chen Feng. Modeling the transmission dynamics of COVID-19 epidemic: a systematic review[J]. The Journal of Biomedical Research, 2020, 34(6): 422-430. doi: 10.7555/JBR.34.20200119

Modeling the transmission dynamics of COVID-19 epidemic: a systematic review

doi: 10.7555/JBR.34.20200119
More Information
  • Corresponding author: Feng Chen, Department of Epidemiology and Biostatistics, School of Public Health, Center for Global Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Tel: +86-25-86868436, E-mail: fengchen@njmu.edu.cn
  • Received: 2020-07-23
  • Revised: 2020-09-17
  • Accepted: 2020-09-25
  • Published: 2020-10-30
  • Issue Date: 2020-11-28
  • The outbreak and rapid spread of COVID-19 has become a public health emergency of international concern. A number of studies have used modeling techniques and developed dynamic models to estimate the epidemiological parameters, explore and project the trends of the COVID-19, and assess the effects of intervention or control measures. We identified 63 studies and summarized the three aspects of these studies: epidemiological parameters estimation, trend prediction, and control measure evaluation. Despite the discrepancy between the predictions and the actuals, the dynamic model has made great contributions in the above three aspects. The most important role of dynamic models is exploring possibilities rather than making strong predictions about longer-term disease dynamics.


  • loading
  • [1]
    Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV)[EB/OL]. [2020-01-30]. https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov).
    Coronavirus disease (COVID-2019) situation reports[EB/OL]. [2020-01-21]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
    Yousefpour A, Jahanshahi H, Bekiros S. Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak[J]. Chaos, Solitons Fractals,2020, 136: 109883. doi: 10.1016/j.chaos.2020.109883
    Ma S, Xia YC. Mathematical understanding of infectious disease dynamics[M]. Singapore: World Scientific Publishing Company, 2008.
    Li RY, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)[J]. Science,2020, 368(6490): 489–493. doi: 10.1126/science.abb3221
    Holmdahl I, Buckee C. Wrong but useful — what covid-19 epidemiologic models can and cannot tell us[J]. N Engl J Med,2020, 383(4): 303–305. doi: 10.1056/NEJMp2016822
    Park M, Cook AR, Lim JT, et al. A systematic review of COVID-19 epidemiology based on current evidence[J]. J Clin Med,2020, 9(4): 967. doi: 10.3390/jcm9040967
    Siegenfeld AF, Taleb NN, Bar-Yam Y. Opinion: what models can and cannot tell us about COVID-19[J]. Proc Natl Acad Sci U S A,2020, 117(28): 16092–16095. doi: 10.1073/pnas.2011542117
    Vynnycky E, White RG. An introduction to infectious disease modelling[M]. Oxford: Oxford University Press, 2010.
    Bai Y, Yao LS, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19[J]. JAMA,2020, 323(14): 1406–1407. doi: 10.1001/jama.2020.2565
    Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany[J]. N Engl J Med,2020, 382(10): 970–971. doi: 10.1056/NEJMc2001468
    Huang R, Xia J, Chen YX, et al. A family cluster of SARS-CoV-2 infection involving 11 patients in Nanjing, China[J]. Lancet Infect Dis,2020, 20(5): 534–535. doi: 10.1016/S1473-3099(20)30147-X
    Wei YY, Lu ZZ, Du ZC, et al. Fitting and forecasting the trend of COVID-19 by SEIR+CAQ dynamic model[J]. Chin J Epidemiol (in Chinese),2020, 41(4): 470–475. doi: 10.3760/cma.j.cn112338-20200216-00106
    Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada[J]. CMAJ,2020, 192(19): E497–E505. doi: 10.1503/cmaj.200476
    Zhao C, Tepekule B, Criscuolo NG, et al. icumonitoring.ch: a platform for short-term forecasting of intensive care unit occupancy during the COVID-19 epidemic in Switzerland[J]. Swiss Med Wkly,2020, 150: w20277. doi: 10.4414/smw.2020.20277
    Kissler SM, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period[J]. Science,2020, 368(6493): 860–868. doi: 10.1126/science.abb5793
    Ndaïrou F, Area I, Nieto JJ, et al. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan[J]. Chaos,Solitons Fractals,2020, 135: 109846. doi: 10.1016/j.chaos.2020.109846
    Tang SY, Xiao YN, Peng ZH, et al. Prediction modeling with data fusion and prevention strategy analysis for the COVID-19 outbreak[J]. Chin J Epidemiol (in Chinese),2020, 41(4): 480–484. doi: 10.3760/cma.j.cn112338-20200216-00107
    Tang B, Scarabel F, Bragazzi NL, et al. De-escalation by reversing the escalation with a stronger synergistic package of contact tracing, quarantine, isolation and personal protection: feasibility of preventing a COVID-19 rebound in Ontario, Canada, as a case study[J]. Biology (Basel),2020, 9(5): 100. doi: 10.3390/biology9050100
    Wu P, Hao XX, Lau EHY, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020[J]. Euro Surveill,2020, 25(3). doi: 10.2807/1560-7917.es.2020.25.3.2000044
    Du ZW, Wang L, Cauchemez S, et al. Risk for transportation of coronavirus disease from wuhan to other cities in China[J]. Emerg Infect Dis,2020, 26(5): 1049–1052. doi: 10.3201/eid2605.200146
    Munster VJ, Koopmans M, Van Doremalen N, et al. A novel coronavirus emerging in China — key questions for impact assessment[J]. N Engl J Med,2020, 382(8): 692–694. doi: 10.1056/NEJMp2000929
    Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet,2020, 395(10225): 689–697. doi: 10.1016/S0140-6736(20)30260-9
    Lauer SA, Grantz KH, Bi QF, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application[J]. Ann Intern Med,2020, 172(9): 577–582. doi: 10.7326/M20-0504
    Wan KK, Chen J, Lu CM, et al. When will the battle against novel coronavirus end in Wuhan: a SEIR modeling analysis[J]. J Glob Health,2020, 10(1): 011002. doi: 10.7189/jogh.10.011002
    Cui QQ, Hu ZY, Li YK, et al. Dynamic variations of the COVID-19 disease at different quarantine strategies in Wuhan and mainland China[J]. J Infect Public Health,2020, 13(6): 849–855. doi: 10.1016/j.jiph.2020.05.014
    Lau EHY, Hsiung CA, Cowling BJ, et al. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan[J]. BMC Infect Dis,2010, 10: 50. doi: 10.1186/1471-2334-10-50
    Yang ZF, Zeng ZQ, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. J Thorac Dis,2020, 12(3): 165–174. doi: 10.21037/jtd.2020.02.64
    Tian HY, Liu YH, Li YD, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science,2020, 368(6491): 638–642. doi: 10.1126/science.abb6105
    Linka K, Peirlinck M, Sahli Costabal F, et al. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions[J]. Comput Methods Biomech Biomed Engin,2020, 23(11): 710–717. doi: 10.1080/10255842.2020.1759560
    Roques L, Klein EK, Papaïx J, et al. Impact of lockdown on the epidemic dynamics of COVID-19 in France[J]. Front Med (Lausanne),2020, 7: 274. doi: 10.3389/fmed.2020.00274
    Gatto M, Bertuzzo E, Mari L, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures[J]. Proc Natl Acad Sci U S A,2020, 117(19): 10484–10491. doi: 10.1073/pnas.2004978117
    Cao SL, Feng PH, Shi PP. Study on the epidemic development of COVID-19 in Hubei province by a modified SEIR model[J]. J Zhejiang Univ (Med Sci) (in Chinese),2020, 49(2): 178–184. doi: 10.3785/j.issn.1008-9292.2020.02.05
    Wei YY, Wei LM, Jiang Y, et al. Implementation of clinical diagnostic criteria and universal symptom survey contributed to lower magnitude and faster resolution of the COVID-19 epidemic in Wuhan[J]. Engineering (Beijing),2020. doi: 10.1016/j.eng.2020.04.008. [Epub ahead of print
    Wang HW, Wang ZZ, Dong YQ, et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China[J]. Cell Discov,2020, 6(1): 10. doi: 10.1038/s41421-020-0148-0
    Zu J, Li ML, Li ZF, et al. Transmission patterns of COVID-19 in the mainland of China and the efficacy of different control strategies: a data- and model-driven study[J]. Infect Dis Poverty,2020, 9(1): 83. doi: 10.1186/s40249-020-00709-z
    Dehning J, Zierenberg J, Spitzner FP, et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions[J]. Science,2020, 369(6500): eabb9789. doi: 10.1126/science.abb9789
    Wirawan IMA, Januraga PP. Forecasting COVID-19 transmission and healthcare capacity in Bali, Indonesia[J]. J Prev Med Public Health,2020, 53(3): 158–163. doi: 10.3961/jpmph.20.152
    Childs ML, Kain MP, Kirk D, et al. The impact of long-term non-pharmaceutical interventions on COVID-19 epidemic dynamics and control[EB/OL]. [2020-05-06]. https://www.medrxiv.org/content/10.1101/2020.05.03.20089078v1.
    Eikenberry SE, Mancuso M, Iboi E, et al. To mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic[J]. Infect Dis Model,2020, 5: 293–308. doi: 10.1016/j.idm.2020.04.001
    Zhou WK, Wang AL, Xia F, et al. Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak[J]. Math Biosci Eng,2020, 17(3): 2693–2707. doi: 10.3934/mbe.2020147
    Weitz JS, Beckett SJ, Coenen AR, et al. Modeling shield immunity to reduce COVID-19 epidemic spread[J]. Nat Med,2020, 26(6): 849–854. doi: 10.1038/s41591-020-0895-3
    Hartig F, Calabrese JM, Reineking B, et al. Statistical inference for stochastic simulation models-theory and application[J]. Ecol Lett,2011, 14(8): 816–827. doi: 10.1111/j.1461-0248.2011.01640.x
    Reis RF, De Melo Quintela B, De Oliveira Campos J, et al. Characterization of the COVID-19 pandemic and the impact of uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and Brazil[J]. Chaos, Solitons Fractals,2020, 136: 109888. doi: 10.1016/j.chaos.2020.109888
    Kennedy DM, Zambrano GJ, Wang YY, et al. Modeling the effects of intervention strategies on COVID-19 transmission dynamics[J]. J Clin Virol,2020, 128: 104440. doi: 10.1016/j.jcv.2020.104440
    Tang B, Wang X, Li Q, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. J Clin Med,2020, 9(2): 462. doi: 10.3390/jcm9020462
  • JBR-2020-0119-Supplementary.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1640) PDF downloads(187) Cited by()
    Proportional views
    Relative Articles


    DownLoad:  Full-Size Img  PowerPoint