• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Liu Xiaowei, Nakamura Fumihiko. Mechanotransduction, nanotechnology, and nanomedicine[J]. The Journal of Biomedical Research, 2021, 35(4): 284-293. doi: 10.7555/JBR.34.20200063
Citation: Liu Xiaowei, Nakamura Fumihiko. Mechanotransduction, nanotechnology, and nanomedicine[J]. The Journal of Biomedical Research, 2021, 35(4): 284-293. doi: 10.7555/JBR.34.20200063

Mechanotransduction, nanotechnology, and nanomedicine

doi: 10.7555/JBR.34.20200063
More Information
  • Corresponding author: Fumihiko Nakamura, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. Tel: +86-22-87401830, E-mail: fnakamura@tju.edu.cn
  • Received: 2020-04-29
  • Revised: 2020-05-26
  • Accepted: 2020-05-29
  • Published: 2020-07-31
  • Issue Date: 2021-07-28
  • Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.

     

  • loading
  • [1]
    Urner S, Kelly-Goss M, Peirce SM, et al. Mechanotransduction in blood and lymphatic vascular development and disease[J]. Adv Pharmacol, 2018, 81: 155–208. doi: 10.1016/bs.apha.2017.08.009
    [2]
    Malakou LS, Gargalionis AN, Piperi C, et al. Molecular mechanisms of mechanotransduction in psoriasis[J]. Ann Transl Med, 2018, 6(12): 245. doi: 10.21037/atm.2018.04.09
    [3]
    Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, et al. Mechanotransduction in tumor progression: the dark side of the force[J]. J Cell Biol, 2018, 217(5): 1571–1587. doi: 10.1083/jcb.201701039
    [4]
    Nakamura F. Mechanotransduction in blood cells[J]. Asia-Pacific J Blood Types Genes, 2017, 1(1): 1–9.
    [5]
    Maycas M, Esbrit P, Gortázar AR. Molecular mechanisms in bone mechanotransduction[J]. Histol Histopathol, 2017, 32(8): 751–760.
    [6]
    Lyon RC, Zanella F, Omens JH, et al. Mechanotransduction in cardiac hypertrophy and failure[J]. Circ Res, 2015, 116(8): 1462–1476. doi: 10.1161/CIRCRESAHA.116.304937
    [7]
    Vincent TL. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix[J]. Curr Opin Pharmacol, 2013, 13(3): 449–454. doi: 10.1016/j.coph.2013.01.010
    [8]
    Cheng CM, Tang MJ. Review series - mechanotransduction from physiology to disease states[J]. J Cell Mol Med, 2013, 17(2): 223–224. doi: 10.1111/jcmm.12037
    [9]
    French AS. Mechanotransduction[J]. Annu Rev Physiol, 1992, 54: 135–152. doi: 10.1146/annurev.ph.54.030192.001031
    [10]
    Petridou NI, Spiró Z, Heisenberg CP. Multiscale force sensing in development[J]. Nat Cell Biol, 2017, 19(6): 581–588. doi: 10.1038/ncb3524
    [11]
    Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions[J]. Nat Rev Mol Cell Biol, 2006, 7(4): 265–275. doi: 10.1038/nrm1890
    [12]
    Najrana T, Sanchez-Esteban J. Mechanotransduction as an adaptation to gravity[J]. Front Pediatr, 2016, 4: 140.
    [13]
    Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 802–812.
    [14]
    Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility[J]. Nat Rev Mol Cell Biol, 2009, 10(1): 34–43. doi: 10.1038/nrm2592
    [15]
    Uroz M, Wistorf S, Serra-Picamal X, et al. Regulation of cell cycle progression by cell-cell and cell-matrix forces[J]. Nat Cell Biol, 2018, 20(6): 646–654. doi: 10.1038/s41556-018-0107-2
    [16]
    Young SM, Liu S, Joshi R, et al. Localization and stretch-dependence of lung elastase activity in development and compensatory growth[J]. J Appl Physiol (1985), 2015, 118(7): 921–931. doi: 10.1152/japplphysiol.00954.2014
    [17]
    Liu J, Yu W, Liu Y, et al. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway[J]. Sci Rep, 2016, 6(1): 21112. doi: 10.1038/srep21112
    [18]
    Wang E. Age-dependent atrophy and microgravity travel: what do they have in common?[J]. FASEB J, 1999, 13(9001): S167–S174.
    [19]
    Blaber E, Marçal H, Burns BP. Bioastronautics: the influence of microgravity on astronaut health[J]. Astrobiology, 2010, 10(5): 463–473. doi: 10.1089/ast.2009.0415
    [20]
    Bamman MM, Roberts BM, Adams GR. Molecular regulation of exercise-induced muscle fiber hypertrophy[J]. Cold Spring Harb Perspect Med, 2018, 8(6): a029751. doi: 10.1101/cshperspect.a029751
    [21]
    Olsen LA, Nicoll JX, Fry AC. The skeletal muscle fiber: a mechanically sensitive cell[J]. Eur J Appl Physiol, 2019, 119(2): 333–349. doi: 10.1007/s00421-018-04061-x
    [22]
    Kim HJ, Choi YS, Jeong MJ, et al. Expression of UNCL during development of periodontal tissue and response of periodontal ligament fibroblasts to mechanical stress in vivo and in vitro[J]. Cell Tissue Res, 2007, 327(1): 25–31.
    [23]
    O'Conor CJ, Case N, Guilak F. Mechanical regulation of chondrogenesis[J]. Stem Cell Res Ther, 2013, 4(4): 61. doi: 10.1186/scrt211
    [24]
    Fearing BV, Hernandez PA, Setton LA, et al. Mechanotransduction and cell biomechanics of the intervertebral disc[J]. JOR Spine, 2018, 1(3): e1026. doi: 10.1002/jsp2.1026
    [25]
    Bradamante S, Barenghi L, Maier JAM. Stem cells toward the future: the space challenge[J]. Life (Basel), 2014, 4(2): 267–280.
    [26]
    Ivanovska IL, Shin JW, Swift J, et al. Stem cell mechanobiology: diverse lessons from bone marrow[J]. Trends Cell Biol, 2015, 25(9): 523–532. doi: 10.1016/j.tcb.2015.04.003
    [27]
    Wei SC, Yang J. Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial-mesenchymal transition[J]. Trends Cell Biol, 2016, 26(2): 111–120. doi: 10.1016/j.tcb.2015.09.009
    [28]
    Sokolov I, Iyer S, Woodworth CD. Recovery of elasticity of aged human epithelial cells in vitro[J]. Nanomedicine, 2006, 2(1): 31–36. doi: 10.1016/j.nano.2005.12.002
    [29]
    Pelissier FA, Garbe JC, Ananthanarayanan B, et al. Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors[J]. Cell Rep, 2014, 7(6): 1926–1939. doi: 10.1016/j.celrep.2014.05.021
    [30]
    Casey T, Patel OV, Plaut K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change[J]. Physiol Genomics, 2015, 47(4): 113–128. doi: 10.1152/physiolgenomics.00117.2014
    [31]
    Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction[J]. Nat Rev Mol Cell Biol, 2017, 18(12): 717–727. doi: 10.1038/nrm.2017.101
    [32]
    Barzegari A, Omidi Y, Ostadrahimi A, et al. The role of Piezo proteins and cellular mechanosensing in tuning the fate of transplanted stem cells[J]. Cell Tissue Res, 2020, 381(1): 1–12. doi: 10.1007/s00441-020-03191-z
    [33]
    Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction[J]. Nature, 2011, 474(7350): 179–183. doi: 10.1038/nature10137
    [34]
    Huang XW, Yang NH, Fiore VF, et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction[J]. Am J Respir Cell Mol Biol, 2012, 47(3): 340–348. doi: 10.1165/rcmb.2012-0050OC
    [35]
    Jaalouk DE, Lammerding J. Mechanotransduction gone awry[J]. Nat Rev Mol Cell Biol, 2009, 10(1): 63–73. doi: 10.1038/nrm2597
    [36]
    Asano S, Ito S, Morosawa M, et al. Cyclic stretch enhances reorientation and differentiation of 3-D culture model of human airway smooth muscle[J]. Biochem Biophys Rep, 2018, 16: 32–38.
    [37]
    Yamamoto K, Ando J. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases[J]. Am J Physiol Heart Circ Physiol, 2015, 309(7): H1178–H185. doi: 10.1152/ajpheart.00241.2015
    [38]
    Takahara N, Ito S, Furuya K, et al. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2014, 51(6): 772–782. doi: 10.1165/rcmb.2014-0008OC
    [39]
    Liu C, Montell C. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism[J]. Biochem Biophys Res Commun, 2015, 460(1): 22–25. doi: 10.1016/j.bbrc.2015.02.067
    [40]
    Vitzthum C, Clauss WG, Fronius M. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress[J]. Biochim Biophys Acta, 2015, 1848: 2942–2951. doi: 10.1016/j.bbamem.2015.09.009
    [41]
    Yang L, Yang Y, Wang S, et al. In vitro mechanical loading models for periodontal ligament cells: from two-dimensional to three-dimensional models[J]. Arch Oral Biol, 2015, 60(3): 416–424. doi: 10.1016/j.archoralbio.2014.11.012
    [42]
    Chukkapalli SS, Lele TP. Periodontal cell mechanotransduction[J]. Open Biol, 2018, 8(9): 180053. doi: 10.1098/rsob.180053
    [43]
    Anderson DE, Johnstone B. Dynamic mechanical compression of chondrocytes for tissue engineering: a critical review[J]. Front Bioeng Biotechnol, 2017, 5: 76. doi: 10.3389/fbioe.2017.00076
    [44]
    Gongol B, Marin T, Zhang J, et al. Shear stress regulation of miR-93 and miR-484 maturation through nucleolin[J]. Proc Natl Acad Sci U S A, 2019, 116(26): 12974–12979. doi: 10.1073/pnas.1902844116
    [45]
    Torday JS. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology[J]. Adv Space Res, 2003, 32(8): 1569–1576. doi: 10.1016/S0273-1177(03)90397-8
    [46]
    Baio J, Martinez AF, Silva I, et al. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties[J]. npj Microgravity, 2018, 4: 13. doi: 10.1038/s41526-018-0048-x
    [47]
    Lu DY, Sun SJ, Zhang F, et al. Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite[J]. FASEB J, 2019, 33(3): 4273–4286. doi: 10.1096/fj.201802075R
    [48]
    Lim K, Kim J, Seonwoo H, et al. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering[J]. Biomed Res Int, 2013, 2013: 269724.
    [49]
    Jiang L, Sun ZL, Chen XF, et al. Cells sensing mechanical cues: stiffness influences the lifetime of cell-extracellular matrix interactions by affecting the loading rate[J]. ACS Nano, 2016, 10(1): 207–217. doi: 10.1021/acsnano.5b03157
    [50]
    Gong Z, Szczesny SE, Caliari SR, et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates[J]. Proc Natl Acad Sci U S A, 2018, 115(12): E2686–E2695. doi: 10.1073/pnas.1716620115
    [51]
    Hieda M. Signal transduction across the nuclear envelope: role of the LINC complex in bidirectional signaling[J]. Cells, 2019, 8(2): 124. doi: 10.3390/cells8020124
    [52]
    Zhao QC, Zhou H, Li XM, et al. The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism[J]. FEBS J, 2019, 286(13): 2461–2470. doi: 10.1111/febs.14711
    [53]
    Nakamura F, Stossel TP, Hartwig JH. The filamins: organizers of cell structure and function[J]. Cell Adh Migr, 2011, 5(2): 160–169. doi: 10.4161/cam.5.2.14401
    [54]
    Ehrlicher AJ, Nakamura F, Hartwig JH, et al. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A[J]. Nature, 2011, 478(7368): 260–263. doi: 10.1038/nature10430
    [55]
    Razinia Z, Mäkelä T, Ylänne J, et al. Filamins in mechanosensing and signaling[J]. Annu Rev Biophys, 2012, 41: 227–246. doi: 10.1146/annurev-biophys-050511-102252
    [56]
    Wang L, Nakamura F. Identification of Filamin A mechanobinding partner I: smoothelin specifically interacts with the filamin A Mechanosensitive domain 21[J]. Biochemistry, 2019, 58(47): 4726–4736. doi: 10.1021/acs.biochem.9b00100
    [57]
    Wang J, Nakamura F. Identification of Filamin A mechanobinding partner Ⅱ: fimbacin is a novel actin cross-linking and Filamin A binding protein[J]. Biochemistry, 2019, 58(47): 4737–4743. doi: 10.1021/acs.biochem.9b00101
    [58]
    Haining AWM, Rahikainen R, Cortes E, et al. Mechanotransduction in talin through the interaction of the R8 domain with DLC1[J]. PLoS Biol, 2018, 16(7): e2005599. doi: 10.1371/journal.pbio.2005599
    [59]
    Zhang XH, Halvorsen K, Zhang CZ, et al. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor[J]. Science, 2009, 324(5932): 1330–1334. doi: 10.1126/science.1170905
    [60]
    Crawley JTB, de Groot R, Xiang YZ, et al. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor[J]. Blood, 2011, 118(12): 3212–3221. doi: 10.1182/blood-2011-02-306597
    [61]
    Goutman JD, Elgoyhen AB, Gómez-Casati ME. Cochlear hair cells: the sound-sensing machines[J]. FEBS Lett, 2015, 589(22): 3354–3361. doi: 10.1016/j.febslet.2015.08.030
    [62]
    Chen CH, Lin YH, Chen CH, et al. Transforming growth factor beta 1 mediates the low-frequency vertical vibration enhanced production of tenomodulin and type I collagen in rat Achilles tendon[J]. PLoS One, 2018, 13(10): e0205258. doi: 10.1371/journal.pone.0205258
    [63]
    Turner DC, Edmiston AM, Zohner YE, et al. Transient intraocular pressure fluctuations: source, magnitude, frequency, and associated mechanical energy[J]. Invest Ophthalmol Vis Sci, 2019, 60(7): 2572–2582. doi: 10.1167/iovs.19-26600
    [64]
    Mathieu S, Manneville JB. Intracellular mechanics: connecting rheology and mechanotransduction[J]. Curr Opin Cell Biol, 2019, 56: 34–44. doi: 10.1016/j.ceb.2018.08.007
    [65]
    Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus[J]. Nat Rev Mol Cell Biol, 2009, 10(1): 75–82. doi: 10.1038/nrm2594
    [66]
    Belaadi N, Millon-Frémillon A, Aureille J, et al. Analyzing mechanotransduction through the LINC complex in isolated nuclei[M]//Gundersen GG, Worman HJ. The LINC Complex. New York: Humana Press, 2018: 73–80.
    [67]
    Wang SS, Stoops E, Cp U, et al. Mechanotransduction via the LINC complex regulates DNA replication in myonuclei[J]. J Cell Biol, 2018, 217(6): 2005–2018. doi: 10.1083/jcb.201708137
    [68]
    Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores[J]. Cell, 2017, 171(6): 1397–1410.e14. doi: 10.1016/j.cell.2017.10.008
    [69]
    Shim JW, Wise DA, Elder SH. Effect of cytoskeletal disruption on Mechanotransduction of hydrostatic pressure by C3H10T1/2 murine fibroblasts[J]. Open Orthop J, 2008, 2: 155–162. doi: 10.2174/1874325000802010155
    [70]
    Thomasy SM, Morgan JT, Wood JA, et al. Substratum stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshwork cells[J]. Exp Eye Res, 2013, 113: 66–73. doi: 10.1016/j.exer.2013.05.014
    [71]
    Yang B, McJunkin K. CRISPR screening strategies for microRNA target identification[J]. FEBS J, 2020, . doi: 10.1111/febs.15218
    [72]
    Calderwood DA, Huttenlocher A, Kiosses WB, et al. Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration[J]. Nat Cell Biol, 2001, 3(12): 1060–1068. doi: 10.1038/ncb1201-1060
    [73]
    Ohta Y, Hartwig JH, Stossel TP. FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling[J]. Nat Cell Biol, 2006, 8(8): 803–814. doi: 10.1038/ncb1437
    [74]
    Fal K, Asnacios A, Chabouté ME, et al. Nuclear envelope: a new frontier in plant mechanosensing?[J]. Biophys Rev, 2017, 9(4): 389–403. doi: 10.1007/s12551-017-0302-6
    [75]
    Hirata H, Tatsumi H, Sokabe M. Mechanical forces facilitate actin polymerization at focal adhesions in a Zyxin-dependent manner[J]. J Cell Sci, 2008, 121(17): 2795–2804. doi: 10.1242/jcs.030320
    [76]
    Moreno-Vicente R, Pavon DM, Martin-Padura I, et al. Caveolin-1 Modulates Mechanotransduction responses to substrate stiffness through actin-dependent control of YAP[J]. Cell Rep, 2018, 25(6): 1622–1635.e6. doi: 10.1016/j.celrep.2018.10.024
    [77]
    Chang L, Azzolin L, Di Biagio D, et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ[J]. Nature, 2018, 563(7730): 265–269. doi: 10.1038/s41586-018-0658-1
    [78]
    Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ[J]. Nat Rev Mol Cell Biol, 2012, 13(9): 591–600. doi: 10.1038/nrm3416
    [79]
    Zhang XQ, Hu XY, Lei HZ, et al. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces[J]. Nanoscale, 2016, 8(11): 6008–6013. doi: 10.1039/C5NR08713A
    [80]
    Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription[J]. Cell Mol Biol Lett, 2016, 21(1): 28. doi: 10.1186/s11658-016-0028-7
    [81]
    Miralles F, Posern G, Zaromytidou AI, et al. Actin dynamics control SRF activity by regulation of its coactivator MAL[J]. Cell, 2003, 113(3): 329–342. doi: 10.1016/S0092-8674(03)00278-2
    [82]
    Hu X, Liu ZZ, Chen XY, et al. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation[J]. Nat Commun, 2019, 10(1): 1695. doi: 10.1038/s41467-019-09636-6
    [83]
    Dorland YL, Huveneers S. Cell-cell junctional mechanotransduction in endothelial remodeling[J]. Cell Mol Life Sci, 2017, 74(2): 279–292. doi: 10.1007/s00018-016-2325-8
    [84]
    Chen TC, Saw TB, Mège RM, et al. Mechanical forces in cell monolayers[J]. J Cell Sci, 2018, 131(24): jcs218156. doi: 10.1242/jcs.218156
    [85]
    Das T, Safferling K, Rausch S, et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells[J]. Nat Cell Biol, 2015, 17(3): 276–287. doi: 10.1038/ncb3115
    [86]
    Chakraborty S, Njah K, Pobbati AV, et al. Agrin as a Mechanotransduction signal regulating YAP through the hippo pathway[J]. Cell Rep, 2017, 18(10): 2464–2479. doi: 10.1016/j.celrep.2017.02.041
    [87]
    Wu PH, Aroush DRB, Asnacios A, et al. A comparison of methods to assess cell mechanical properties[J]. Nat Methods, 2018, 15(7): 491–498. doi: 10.1038/s41592-018-0015-1
    [88]
    Furuike S, Ito T, Yamazaki M. Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy[J]. FEBS Lett, 2001, 498(1): 72–75. doi: 10.1016/S0014-5793(01)02497-8
    [89]
    Ferrer JM, Lee H, Chen J, et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins[J]. Proc Natl Acad Sci U S A, 2008, 105(27): 9221–9226. doi: 10.1073/pnas.0706124105
    [90]
    Chen H, Yuan GH, Winardhi RS, et al. Dynamics of equilibrium folding and unfolding transitions of Titin immunoglobulin domain under constant forces[J]. J Am Chem Soc, 2015, 137(10): 3540–3546. doi: 10.1021/ja5119368
    [91]
    Cossio P, Hummer G, Szabo A. On artifacts in single-molecule force spectroscopy[J]. Proc Natl Acad Sci U S A, 2015, 112(46): 14248–14253. doi: 10.1073/pnas.1519633112
    [92]
    Rief M, Gautel M, Oesterhelt F, et al. Reversible unfolding of individual Titin immunoglobulin domains by AFM[J]. Science, 1997, 276(5315): 1109–1112. doi: 10.1126/science.276.5315.1109
    [93]
    Chen H, Zhu XY, Cong PW, et al. Differential mechanical stability of filamin A rod segments[J]. Biophys J, 2011, 101(5): 1231–1237. doi: 10.1016/j.bpj.2011.07.028
    [94]
    Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nat Methods, 2008, 5(6): 491–505. doi: 10.1038/nmeth.1218
    [95]
    Rognoni L, Stigler J, Pelz B, et al. Dynamic force sensing of filamin revealed in single-molecule experiments[J]. Proc Natl Acad Sci U S A, 2012, 109(48): 19679–19684. doi: 10.1073/pnas.1211274109
    [96]
    Erickson HP. Reversible unfolding of fibronectin type Ⅲ and immunoglobulin domains provides the structural basis for stretch and elasticity of Titin and fibronectin[J]. Proc Natl Acad Sci U S A, 1994, 91(21): 10114–10118. doi: 10.1073/pnas.91.21.10114
    [97]
    Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps[J]. Nature, 1994, 368(6467): 113–119. doi: 10.1038/368113a0
    [98]
    Hunt AJ, Gittes F, Howard J. The force exerted by a single kinesin molecule against a viscous load[J]. Biophys J, 1994, 67(2): 766–781. doi: 10.1016/S0006-3495(94)80537-5
    [99]
    Grashoff C, Hoffman BD, Brenner MD, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics[J]. Nature, 2010, 466(7303): 263–266. doi: 10.1038/nature09198
    [100]
    Ringer P, Weißl A, Cost AL, et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1[J]. Nat Methods, 2017, 14(11): 1090–1096. doi: 10.1038/nmeth.4431
    [101]
    del Rio A, Perez-Jimenez R, Liu RC, et al. Stretching single talin rod molecules activates vinculin binding[J]. Science, 2009, 323(5914): 638–641. doi: 10.1126/science.1162912
    [102]
    Charras G, Yap AS. Tensile forces and Mechanotransduction at cell-cell junctions[J]. Curr Biol, 2018, 28(8): R445–R457. doi: 10.1016/j.cub.2018.02.003
    [103]
    Ma VPY, Salaita K. DNA nanotechnology as an emerging tool to study Mechanotransduction in living systems[J]. Small, 2019, 15(26): 1900961. doi: 10.1002/smll.201900961
    [104]
    Huang Q, Lee J, Arce FT, et al. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon-dielectric interactions[J]. Nat Photonics, 2017, 11(6): 352–355. doi: 10.1038/nphoton.2017.74
    [105]
    Seo D, Southard KM, Kim JW, et al. A Mechanogenetic toolkit for interrogating cell signaling in space and time[J]. Cell, 2016, 165(6): 1507–1518. doi: 10.1016/j.cell.2016.04.045
    [106]
    Shen YJ, Cheng Y, Uyeda TQP, et al. Cell Mechanosensors and the possibilities of using magnetic nanoparticles to study them and to modify cell fate[J]. Ann Biomed Eng, 2017, 45(10): 2475–2486. doi: 10.1007/s10439-017-1884-7
    [107]
    Gonçalves AI, Miranda MS, Rodrigues MT, et al. Magnetic responsive cell-based strategies for diagnostics and therapeutics[J]. Biomed Mater, 2018, 13(5): 054001. doi: 10.1088/1748-605X/aac78b
    [108]
    Nagayama K, Inoue T, Hamada Y, et al. Direct application of mechanical stimulation to cell adhesion sites using a novel magnetic-driven micropillar substrate[J]. Biomed Microdevices, 2018, 20(4): 85. doi: 10.1007/s10544-018-0328-y
    [109]
    Norregaard K, Metzler R, Ritter CM, et al. Manipulation and motion of organelles and single molecules in living cells[J]. Chem Rev, 2017, 117(5): 4342–4375. doi: 10.1021/acs.chemrev.6b00638
    [110]
    Zhao DY, Liu SY, Gao Y. Single-molecule manipulation and detection[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(3): 231–237. doi: 10.1093/abbs/gmx146
    [111]
    Cordova JC, Das DK, Manning HW, et al. Combining single-molecule manipulation and single-molecule detection[J]. Curr Opin Struct Biol, 2014, 28: 142–148. doi: 10.1016/j.sbi.2014.08.010
    [112]
    Fisher TE, Marszalek PE, Fernandez JM. Stretching single molecules into novel conformations using the atomic force microscope[J]. Nat Struct Biol, 2000, 7(9): 719–724. doi: 10.1038/78936
    [113]
    Fotiadis D, Scheuring S, Muller SA, et al. Imaging and manipulation of biological structures with the AFM[J]. Micron, 2002, 33(4): 385–397. doi: 10.1016/S0968-4328(01)00026-9
    [114]
    Ando T. Directly watching biomolecules in action by high-speed atomic force microscopy[J]. Biophys Rev, 2017, 9(4): 421–429. doi: 10.1007/s12551-017-0281-7
    [115]
    Charras GT, Lehenkari PP, Horton MA. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions[J]. Ultramicroscopy, 2001, 86(1-2): 85–95. doi: 10.1016/S0304-3991(00)00076-0
    [116]
    Targosz-Korecka M, Malek-Zietek KE, Brzezinka GD, et al. Morphological and nanomechanical changes in mechanosensitive endothelial cells induced by colloidal AFM probes[J]. Scanning, 2016, 38(6): 654–664. doi: 10.1002/sca.21313
    [117]
    Discher D, Dong C, Fredberg JJ, et al. Biomechanics: cell research and applications for the next decade[J]. Ann Biomed Eng, 2009, 37(5): 847–859. doi: 10.1007/s10439-009-9661-x
    [118]
    Pemberton GD, Childs P, Reid S, et al. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking[J]. Nanomedicine (Lond), 2015, 10(4): 547–560. doi: 10.2217/nnm.14.134
    [119]
    Teo BK, Wong ST, Lim CK, et al. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase[J]. ACS Nano, 2013, 7(6): 4785–4798. doi: 10.1021/nn304966z
    [120]
    Wu YN, Law JBK, He AY, et al. Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation[J]. Nanomedicine, 2014, 10(7): 1507–1516. doi: 10.1016/j.nano.2014.04.002
    [121]
    Panadero JA, Lanceros-Mendez S, Ribelles JLG. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading[J]. Acta Biomater, 2016, 33: 1–12. doi: 10.1016/j.actbio.2016.01.037
    [122]
    Dobbenga S, Fratila-Apachitei LE, Zadpoor AA. Nanopattern-induced osteogenic differentiation of stem cells - A systematic review[J]. Acta Biomater, 2016, 46: 3–14. doi: 10.1016/j.actbio.2016.09.031
    [123]
    Tay CY, Koh CG, Tan NS, et al. Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine[J]. Nanomedicine (Lond), 2013, 8(4): 623–638. doi: 10.2217/nnm.13.31
    [124]
    Nakayama KH, Quarta M, Paine P, et al. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration[J]. Commun Biol, 2019, 2(1): 170. doi: 10.1038/s42003-019-0416-4
    [125]
    Catanesi M, Panella G, Benedetti E, et al. YAP/TAZ mechano-transduction as the underlying mechanism of neuronal differentiation induced by reduced graphene oxide[J]. Nanomedicine (Lond), 2018, 13(24): 3091–3106. doi: 10.2217/nnm-2018-0269
    [126]
    Jawad H, Boccaccini AR, Ali NN, et al. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications[J]. Nanotoxicology, 2011, 5(3): 372–380. doi: 10.3109/17435390.2010.516844
    [127]
    Li N, Fan XL, Tang KY, et al. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide[J]. Colloids Surf B Biointerfaces, 2016, 140: 287–296. doi: 10.1016/j.colsurfb.2015.12.005
    [128]
    Pan LL, Pei XB, He R, et al. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application[J]. Colloids Surf B Biointerfaces, 2012, 93: 226–234. doi: 10.1016/j.colsurfb.2012.01.011
    [129]
    Rodriguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, et al. Potential of graphene for tissue engineering applications[J]. Transl Res, 2015, 166(4): 399–400. doi: 10.1016/j.trsl.2015.04.003
    [130]
    Chen GY, Pang DWP, Hwang SM, et al. A graphene-based platform for induced pluripotent stem cells culture and differentiation[J]. Biomaterials, 2012, 33(2): 418–427. doi: 10.1016/j.biomaterials.2011.09.071
    [131]
    Bayir E, Sendemir A, Missirlis YF. Mechanobiology of cells and cell systems, such as organoids[J]. Biophys Rev, 2019, 11(5): 721–728. doi: 10.1007/s12551-019-00590-7
    [132]
    Abdel Fattah AR, Ranga A. Nanoparticles as versatile tools for Mechanotransduction in tissues and organoids[J]. Front Bioeng Biotechnol, 2020, 8: 240. doi: 10.3389/fbioe.2020.00240
    [133]
    Wei Q, Huang CJ, Zhang Y, et al. Mechanotargeting: mechanics-dependent cellular uptake of nanoparticles[J]. Adv Mater, 2018, 30(27): 1707464. doi: 10.1002/adma.201707464
    [134]
    Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression[J]. Nat Rev Cancer, 2009, 9(2): 108–122. doi: 10.1038/nrc2544
    [135]
    Mpekris F, Angeli S, Pirentis AP, et al. Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug delivery[J]. Biomech Model Mechanobiol, 2015, 14(6): 1391–1402. doi: 10.1007/s10237-015-0682-0
    [136]
    Korin N, Kanapathipillai M, Matthews BD, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels[J]. Science, 2012, 337(6095): 738–742. doi: 10.1126/science.1217815
    [137]
    Henstock JR, Rotherham M, Rashidi H, et al. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy[J]. Stem Cells Transl Med, 2014, 3(11): 1363–1374. doi: 10.5966/sctm.2014-0017
    [138]
    Tay A, Di Carlo D. Remote neural stimulation using magnetic nanoparticles[J]. Curr Med Chem, 2017, 24(5): 537–548. doi: 10.2174/0929867323666160814000442
    [139]
    Jiang ZY, Shan KZ, Song J, et al. Toxic effects of magnetic nanoparticles on normal cells and organs[J]. Life Sci, 2019, 220: 156–161. doi: 10.1016/j.lfs.2019.01.056
    [140]
    Rezvani E, Rafferty A, McGuinness C, et al. Adverse effects of nanosilver on human health and the environment[J]. Acta Biomater, 2019, 94: 145–159. doi: 10.1016/j.actbio.2019.05.042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (461) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return