• ISSN 16748301
  • CN 32-1810/R
Article Contents


Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies

  • Corresponding author: Daqing Ma, d.ma@imperial.ac.uk
  • Received Date: 2018-09-12
    Accepted Date: 2018-10-10
  • Hepatic ischemic-reperfusion injury is a major cause of liver transplant failure, and is of increasing significance due to increased use of expanded criteria livers for transplantation. This review summarizes the mechanisms and protective strategies for hepatic ischemic-reperfusion injury in the context of liver transplantation. Pharmacological therapies, the use of pre-and post-conditioning and machine perfusion are discussed as protective strategies. The use of machine perfusion offers significant potential in the reconditioning of liver grafts and the prevention of hepatic ischemic-reperfusion injury, and is an exciting and active area of research, which needs more study clinically.
  • 加载中
  • [1] Ikeda T, Yanaga K, Kishikawa K, et al. Ischemic injury in liver transplantation: difference in injury sites between warm and cold ischemia in rats[J]. Hepatology, 1992, 16(2): 454–461 doi: 10.1002/(ISSN)1527-3350
    [2] Jaeschke H. Reperfusion injury after warm ischemia or cold storage of the liver: role of apoptotic cell death[J]. Transplant Proc, 2002, 34(7): 2656–2658 doi: 10.1016/S0041-1345(02)03464-4
    [3] Huet PM, Nagaoka MR, Desbiens G, et al. Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver[J]. Hepatology, 2004, 39(4): 1110–1119 doi: 10.1002/hep.20157
    [4] Kupiec-Weglinski JW, Busuttil RW. Ischemia and reperfusion injury in liver transplantation[J]. Transplant Proc, 2005, 37(4): 1653–1656 doi: 10.1016/j.transproceed.2005.03.134
    [5] Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation[J]. Am J Transplant, 2011, 11(8): 1563–1569 doi: 10.1111/ajt.2011.11.issue-8
    [6] Pine JK, Aldouri A, Young AL, et al. Liver transplantation following donation after cardiac death: an analysis using matched pairs[J]. Liver Transpl, 2009, 15(9): 1072–1082 doi: 10.1002/lt.v15:9
    [7] Howard TK, Klintmalm GBG, Cofer JB, et al. The influence of preservation injury on rejection in the hepatic transplant recipient[J]. Transplantation, 1990, 49(1): 103–107 doi: 10.1097/00007890-199001000-00023
    [8] Fellström B, Aküyrek LM, Backman U, et al. Postischemic reperfusion injury and allograft arteriosclerosis[J]. Transplant Proc, 1998, 30(8): 4278–4280 doi: 10.1016/S0041-1345(98)01412-2
    [9] Guo WA. The search for a magic bullet to fight multiple organ failure secondary to ischemia/reperfusion injury and abdominal compartment syndrome[J]. J Surg Res, 2013, 184(2): 792–793 doi: 10.1016/j.jss.2012.06.024
    [10] Wertheim JA, Petrowsky H, Saab S, et al. Major challenges limiting liver transplantation in the United States[J]. Am J Transplant, 2011, 11(9): 1773–1784 doi: 10.1111/j.1600-6143.2011.03587.x
    [11] Neuberger J. Liver transplantation in the United Kingdom[J]. Liver Transpl, 2016, 22(8): 1129–1135 doi: 10.1002/lt.v22.8
    [12] NHS Blood and Transplant. Annual activity report[EB/OL]. [2017-02-07]. www.odt.nhs.uk.
    [13] Singal AK, Guturu P, Hmoud B, et al. Evolving frequency and outcomes of liver transplantation based on etiology of liver disease[J]. Transplantation, 2013, 95(5): 755–760 doi: 10.1097/TP.0b013e31827afb3a
    [14] Casillas-Ramírez A, Mosbah IB, Ramalho F, et al. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation[J]. Life Sci, 2006, 79(20): 1881–1894 doi: 10.1016/j.lfs.2006.06.024
    [15] Fan CG, Zwacka RM, Engelhardt JF. Therapeutic approaches for ischemia/reperfusion injury in the liver[J]. J Mol Med (Berl), 1999, 77(8): 577–592 doi: 10.1007/s001099900029
    [16] Zwacka RM, Zhou WH, Zhang YL, et al. Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-κB activation[J]. Nat Med, 1998, 4(6): 698–704 doi: 10.1038/nm0698-698
    [17] Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection[J]. J Gastroenterol Hepatol, 2003, 18(8): 891–902 doi: 10.1046/j.1440-1746.2003.03056.x
    [18] Mavier P, Preaux AM, Guigui B, et al. In vitro toxicity of polymorphonuclear neutrophils to rat hepatocytes: evidence for a proteinase-mediated mechanism[J]. Hepatology, 1988, 8(2): 254–258 doi: 10.1002/(ISSN)1527-3350
    [19] Li XK, Matin AF, Suzuki H, et al. Effect of protease inhibitor on ischemia/reperfusion injury of the rat liver[J]. Transplantation, 1993, 56(6): 1331–1336 doi: 10.1097/00007890-199312000-00008
    [20] Nastos C, Kalimeris K, Papoutsidakis N, et al. Global consequences of liver ischemia/reperfusion injury[J]. Oxid Med Cell Longev, 2014, 2014: 906965
    [21] Selzner M, Selzner N, Jochum W, et al. Increased ischemic injury in old mouse liver: an ATP-dependent mechanism[J]. Liver Transpl, 2007, 13(3): 382–390 doi: 10.1002/(ISSN)1527-6473
    [22] Wang D, Dou K, Song Z, et al. The Na(+)/H(+) exchange inhibitor: a new therapeutic approach for hepatic ischemia injury in rats[J]. Transplant Proc, 2003, 35(8): 3134–3135 doi: 10.1016/j.transproceed.2003.10.021
    [23] Carini R, De Cesaris MG, Splendore R, et al. Alterations of Na+ homeostasis in hepatocyte reoxygenation injury[J]. Biochim Biophys Acta, 2000, 1500(3): 297–305 doi: 10.1016/S0925-4439(99)00114-3
    [24] Nishimura Y, Romer LH, Lemasters JJ. Mitochondrial dysfunction and cytoskeletal disruption during chemical hypoxia to cultured rat hepatic sinusoidal endothelial cells: the pH paradox and cytoprotection by glucose, acidotic pH, and glycine[J]. Hepatology, 1998, 27(4): 1039–1049 doi: 10.1002/(ISSN)1527-3350
    [25] Vairetti M, Richelmi P, Bertè F, et al. Role of pH in protection by low sodium against hypoxic injury in isolated perfused rat livers[J]. J Hepatol, 2006, 44(5): 894–901 doi: 10.1016/j.jhep.2005.08.007
    [26] Gores GJ, Nieminen AL, Wray BE, et al. Intracellular pH during " chemical hypoxia” in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death[J]. J Clin Invest, 1989, 83(2): 386–396 doi: 10.1172/JCI113896
    [27] Jiang N, Zhang ZM, Liu L, et al. Effects of Ca2+ channel blockers on store-operated Ca2+ channel currents of Kupffer cells after hepatic ischemia/reperfusion injury in rats[J]. World J Gastroenterol, 2006, 12(29): 4694–4698 doi: 10.3748/wjg.v12.i29.4694
    [28] Barritt GJ, Chen JL, Rychkov GY. Ca2+-permeable channels in the hepatocyte plasma membrane and their roles in hepatocyte physiology[J]. Biochim Biophys Acta, 2008, 1783(5): 651–672 doi: 10.1016/j.bbamcr.2008.01.016
    [29] Wang HG, Pathan N, Ethell IM, et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD[J]. Science, 1999, 284(5412): 339–343 doi: 10.1126/science.284.5412.339
    [30] Anderson CD, Pierce J, Nicoud I, et al. Modulation of mitochondrial calcium management attenuates hepatic warm ischemia-reperfusion injury[J]. Liver Transpl, 2005, 11(6): 663–668 doi: 10.1002/(ISSN)1527-6473
    [31] Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury[J]. Gastroenterology, 2003, 125(4): 1246–1257 doi: 10.1016/S0016-5085(03)01209-5
    [32] Nauta RJ, Tsimoyiannis E, Uribe M, et al. The role of calcium ions and calcium channel entry blockers in experimental ischemia-reperfusion-induced liver injury[J]. Ann Surg, 1991, 213(2): 137–142 doi: 10.1097/00000658-199102000-00008
    [33] Hataji K, Watanabe T, Oowada S, et al. Effects of a calcium-channel blocker (CV159) on hepatic ischemia/reperfusion injury in rats: evaluation with selective NO/pO2 electrodes and an electron paramagnetic resonance spin-trapping method[J]. Biol Pharm Bull, 2010, 33(1): 77–83 doi: 10.1248/bpb.33.77
    [34] Nicoud IB, Knox CD, Jones CM, et al. 2-APB protects against liver ischemia-reperfusion injury by reducing cellular and mitochondrial calcium uptake[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(3): G623–G630 doi: 10.1152/ajpgi.00521.2006
    [35] Pronobesh C, Dagagi AV, Pallab C, et al. Protective role of the calcium channel blocker amlodipine against mitochondrial injury in ischemia and reperfusion injury of rat liver[J]. Acta Pharm, 2008, 58(4): 421–428
    [36] Abu-Amara M, Yang SY, Tapuria N, et al. Liver ischemia/reperfusion injury: processes in inflammatory networks—a review[J]. Liver Transpl, 2010, 16(9): 1016–1032 doi: 10.1002/lt.22117
    [37] Elmore SP, Qian T, Grissom SF, et al. The mitochondrial permeability transition initiates autophagy in rat hepatocytes[J]. FASEB J, 2001, 15(12): 2286–2287 doi: 10.1096/fj.01-0206fje
    [38] Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy[J]. Arch Biochem Biophys, 2007, 462(2): 245–253 doi: 10.1016/j.abb.2007.03.034
    [39] Zhao KS, Zhao GM, Wu DL, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury[J]. J Biol Chem, 2004, 279(33): 34682–34690 doi: 10.1074/jbc.M402999200
    [40] Kim JS, Qian T, Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes[J]. Gastroenterology, 2003, 124(2): 494–503 doi: 10.1053/gast.2003.50059
    [41] Sastre J, Serviddio G, Pereda J, et al. Mitochondrial function in liver disease[J]. Front Biosci, 2007, 12: 1200–1209 doi: 10.2741/2138
    [42] Videla LA. Cytoprotective and suicidal signaling in oxidative stress[J]. Biol Res, 2010, 43(3): 363–369
    [43] Hines IN, Hoffman JM, Scheerens H, et al. Regulation of postischemic liver injury following different durations of ischemia[J]. Am J Physiol Gastrointest Liver Physiol, 2003, 284(3): G536–G545 doi: 10.1152/ajpgi.00400.2002
    [44] Jaeschke H. Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(6): G1083–G1088 doi: 10.1152/ajpgi.00568.2005
    [45] Spencer NY, Zhou WH, Li Q, et al. Hepatocytes produce TNF-α following hypoxia-reoxygenation and liver ischemia-reperfusion in a NADPH oxidase- and c-Src-dependent manner[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(1): G84–G94 doi: 10.1152/ajpgi.00430.2012
    [46] Reiniers MJ, van Golen RF, van Gulik TM, et al. Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver[J]. Antioxid Redox Signal, 2014, 21(7): 1119–1142 doi: 10.1089/ars.2013.5486
    [47] Pardini RS. Toxicity of oxygen from naturally occurring redox-active pro-oxidants[J]. Arch Insect Biochem Physiol, 1995, 29(2): 101–118 doi: 10.1002/arch.940290203
    [48] Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury: present concepts[J]. J Gastroenterol Hepatol, 2011, 26(S1): 173–179
    [49] Guicciardi ME, Malhi H, Mott JL, et al. Apoptosis and necrosis in the liver[J]. Compr Physiol, 2013, 3(2): 977–1010
    [50] Rauen U, Polzar B, Stephan H, et al. Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species[J]. FASEB J, 1999, 13(1): 155–168 doi: 10.1096/fasebj.13.1.155
    [51] Kawada N, Tran-Thi TA, Klein H, et al. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances: Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus[J]. Eur J Biochem, 1993, 213(2): 815–823 doi: 10.1111/ejb.1993.213.issue-2
    [52] Kawamura E, Yamanaka N, Okamoto E, et al. Response of plasma and tissue endothelin-1 to liver ischemia and its implication in ischemia-reperfusion injury[J]. Hepatology, 1995, 21(4): 1138–1143 doi: 10.1002/(ISSN)1527-3350
    [53] Lefer AM, Lefer DJ. Nitric oxide. II. Nitric oxide protects in intestinal inflammation[J]. Am J Physiol, 1999, 276(3 Pt 1): G572–G575
    [54] Hamada T, Duarte S, Tsuchihashi S, et al. Inducible nitric oxide synthase deficiency impairs matrix metalloproteinase-9 activity and disrupts leukocyte migration in hepatic ischemia/reperfusion injury[J]. Am J Pathol, 2009, 174(6): 2265–2277 doi: 10.2353/ajpath.2009.080872
    [55] Abu-Amara M, Yang SY, Seifalian A, et al. The nitric oxide pathway-evidence and mechanisms for protection against liver ischaemia reperfusion injury[J]. Liver Int, 2012, 32(4): 531–543 doi: 10.1111/liv.2012.32.issue-4
    [56] Chen C, Lee WH, Zhong LW, et al. Regulatory T cells can mediate their function through the stimulation of APCs to produce immunosuppressive nitric oxide[J]. J Immunol, 2006, 176(6): 3449–3460 doi: 10.4049/jimmunol.176.6.3449
    [57] Phillips L, Toledo AH, Lopez-Neblina F, et al. Nitric oxide mechanism of protection in ischemia and reperfusion injury[J]. J Invest Surg, 2009, 22(1): 46–55 doi: 10.1080/08941930802709470
    [58] Lang JD Jr, Teng XJ, Chumley P, et al. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation[J]. J Clin Invest, 2007, 117(9): 2583–2591 doi: 10.1172/JCI31892
    [59] Duranski MR, Greer JJM, Dejam A, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver[J]. J Clin Invest, 2005, 115(5): 1232–1240 doi: 10.1172/JCI22493
    [60] Li W, Meng ZH, Liu YL, et al. The hepatoprotective effect of sodium nitrite on cold ischemia-reperfusion injury[J]. J Transplant, 2012, 2012: 635179
    [61] Shiratori Y, Kiriyama H, Fukushi Y, et al. Modulation of ischemia-reperfusion-induced hepatic injury by Kupffer cells[J]. Dig Dis Sci, 1994, 39(6): 1265–1272 doi: 10.1007/BF02093792
    [62] Jaeschke H, Bautista AP, Spolarics Z, et al. Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats[J]. J Leukoc Biol, 1992, 52(4): 377–382 doi: 10.1002/jlb.1992.52.issue-4
    [63] Fondevila C, Shen XD, Tsuchihashi S, et al. The membrane attack complex (C5b-9) in liver cold ischemia and reperfusion injury[J]. Liver Transpl, 2008, 14(8): 1133–1141 doi: 10.1002/lt.v14:8
    [64] Brock RW, Nie RG, Harris KA, et al. Kupffer cell-initiated remote hepatic injury following bilateral hindlimb ischemia is complement dependent[J]. Am J Physiol Gastrointest Liver Physiol, 2001, 280(2): G279–G284 doi: 10.1152/ajpgi.2001.280.2.G279
    [65] Llacuna L, Marí M, Lluis JM, et al. Reactive oxygen species mediate liver injury through parenchymal nuclear factor-κB inactivation in prolonged ischemia/reperfusion[J]. Am J Pathol, 2009, 174(5): 1776–1785 doi: 10.2353/ajpath.2009.080857
    [66] Selzner N, Selzner M, Odermatt B, et al. ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-α/IL-6 in mice[J]. Gastroenterology, 2003, 124(3): 692–700 doi: 10.1053/gast.2003.50098
    [67] Boury NM, Czuprynski CJ. Listeria monocytogenes infection increases neutrophil adhesion and damage to a murine hepatocyte cell line in vitro[J]. Immunol Lett, 1995, 46(1-2): 111–116 doi: 10.1016/0165-2478(95)00027-3
    [68] Hanschen M, Zahler S, Krombach F, et al. Reciprocal activation between CD4+ T cells and Kupffer cells during hepatic ischemia-reperfusion[J]. Transplantation, 2008, 86(5): 710–718 doi: 10.1097/TP.0b013e3181821aa7
    [69] Nishimura Y, Takei Y, Kawano S, et al. The F(ab’)2 fragment of an anti-ICAM-1 monoclonal antibody attenuates liver injury after orthotopic liver transplantation[J]. Transplantation, 1996, 61(1): 99–104 doi: 10.1097/00007890-199601150-00020
    [70] Fong Y, Moldawer LL, Shires GT, et al. The biologic characteristics of cytokines and their implication in surgical injury[J]. Surg Gynecol Obstet, 1990, 170(4): 363–378
    [71] Leifeld L, Cheng S, Ramakers J, et al. Imbalanced intrahepatic expression of interleukin 12, interferon gamma, and interleukin 10 in fulminant hepatitis B[J]. Hepatology, 2002, 36(4 Pt 1): 1001–1008
    [72] Lentsch AB, Yoshidome H, Kato A, et al. Requirement for interleukin-12 in the pathogenesis of warm hepatic ischemia/reperfusion injury in mice[J]. Hepatology, 1999, 30(6): 1448–1453 doi: 10.1002/(ISSN)1527-3350
    [73] Husted TL, Blanchard J, Schuster R, et al. Potential role for IL-23 in hepatic ischemia/reperfusion injury[J]. Inflamm Res, 2006, 55(5): 177–178 doi: 10.1007/s00011-006-0073-1
    [74] Colletti LM, Remick DG, Burtch GD, et al. Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat[J]. J Clin Invest, 1990, 85(6): 1936–1943 doi: 10.1172/JCI114656
    [75] Colletti LM, Kunkel SL, Walz A, et al. Chemokine expression during hepatic ischemia/reperfusion-induced lung injury in the rat. The role of epithelial neutrophil activating protein[J]. J Clin Invest, 1995, 95(1): 134–141 doi: 10.1172/JCI117630
    [76] Colletti LM, Cortis A, Lukacs N, et al. Tumor necrosis factor up-regulates intercellular adhesion molecule 1, which is important in the neutrophil-dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat[J]. Shock, 1998, 10(3): 182–191 doi: 10.1097/00024382-199809000-00006
    [77] Shito M, Wakabayashi G, Ueda M, et al. Interleukin 1 receptor blockade reduces tumor necrosis factor production, tissue injury, and mortality after hepatic ischemia-reperfusion in the rat[J]. Transplantation, 1997, 63(1): 143–148 doi: 10.1097/00007890-199701150-00026
    [78] Djeu JY, Matsushima K, Oppenheim JJ, et al. Functional activation of human neutrophils by recombinant monocyte-derived neutrophil chemotactic factor/IL-8[J]. J Immunol, 1990, 144(6): 2205–2210
    [79] Lentsch AB, Yoshidome H, Cheadle WG, et al. Chemokine involvement in hepatic ischemia/reperfusion injury in mice: roles for macrophage inflammatory protein-2 and Kupffer cells[J]. Hepatology, 1998, 27(2): 507–512 doi: 10.1002/(ISSN)1527-3350
    [80] Ke BB, Shen XD, Lassman CR, et al. Cytoprotective and antiapoptotic effects of IL-13 in hepatic cold ischemia/reperfusion injury are heme oxygenase-1 dependent[J]. Am J Transplant, 2003, 3(9): 1076–1082 doi: 10.1034/j.1600-6143.2003.00147.x
    [81] Reiter RJ, Paredes SD, Manchester LC, et al. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin[J]. Crit Rev Biochem Mol Biol, 2009, 44(4): 175–200 doi: 10.1080/10409230903044914
    [82] López-Burillo S, Tan DX, Rodriguez-Gallego V, et al. Melatonin and its derivatives cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and 6-methoxymelatonin reduce oxidative DNA damage induced by Fenton reagents[J]. J Pineal Res, 2003, 34(3): 178–184 doi: 10.1111/jpi.2003.34.issue-3
    [83] Barlow-Walden LR, Reiter RJ, Abe M, et al. Melatonin stimulates brain glutathione peroxidase activity[J]. Neurochem Int, 1995, 26(5): 497–502 doi: 10.1016/0197-0186(94)00154-M
    [84] Reiter RJ, Tan DX, Osuna C, et al. Actions of melatonin in the reduction of oxidative stress: a review[J]. J Biomed Sci, 2000, 7(6): 444–458 doi: 10.1007/BF02253360
    [85] Okatani Y, Wakatsuki A, Reiter RJ, et al. Protective effect of melatonin against mitochondrial injury induced by ischemia and reperfusion of rat liver[J]. Eur J Pharmacol, 2003, 469(1-3): 145–152 doi: 10.1016/S0014-2999(03)01643-1
    [86] Kireev R, Bitoun S, Cuesta S, et al. Melatonin treatment protects liver of Zucker rats after ischemia/reperfusion by diminishing oxidative stress and apoptosis[J]. Eur J Pharmacol, 2013, 701(1-3): 185–193 doi: 10.1016/j.ejphar.2012.11.038
    [87] Vairetti M, Ferrigno A, Bertone R, et al. Exogenous melatonin enhances bile flow and ATP levels after cold storage and reperfusion in rat liver: implications for liver transplantation[J]. J Pineal Res, 2005, 38(4): 223–230 doi: 10.1111/jpi.2005.38.issue-4
    [88] De Deken J, Rex S, Monbaliu D, et al. The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses[J]. Crit Care Med, 2016, 44(9): e886–e896 doi: 10.1097/CCM.0000000000001717
    [89] Wilke HJ, Moench C, Lotz G, et al. Xenon anesthesia for liver transplant surgery: a report of four cases[J]. Transplant Proc, 2011, 43(7): 2683–2686 doi: 10.1016/j.transproceed.2011.06.029
    [90] Thies JC, Teklote J, Clauer U, et al. The efficacy of N-acetylcysteine as a hepatoprotective agent in liver transplantation[J]. Transpl Int, 1998, 11(S1): S390–S392 doi: 10.1111/j.1432-2277.1998.tb01164.x
    [91] Weigand MA, Plachky J, Thies JC, et al. N-acetylcysteine attenuates the increase in α-glutathione S-transferase and circulating ICAM-1 and VCAM-1 after reperfusion in humans undergoing liver transplantation[J]. Transplantation, 2001, 72(4): 694–698 doi: 10.1097/00007890-200108270-00023
    [92] Bucuvalas JC, Ryckman FC, Krug S, et al. Effect of treatment with prostaglandin E1 and N-acetylcysteine on pediatric liver transplant recipients: a single-center study[J]. Pediatr Transplant, 2001, 5(4): 274–278 doi: 10.1034/j.1399-3046.2001.005004274.x
    [93] Bromley PN, Cottam SJ, Hilmi I, et al. Effects of intraoperative N-acetylcysteine in orthotopic liver transplantation[J]. Br J Anaesth, 1995, 75(3): 352–354 doi: 10.1093/bja/75.3.352
    [94] Steib A, Freys G, Collin F, et al. Does N-acetylcysteine improve hemodynamics and graft function in liver transplantation?[J]. Liver Transpl Surg, 1998, 4(2): 152–157 doi: 10.1002/(ISSN)1527-6473a
    [95] Tsuchihashi SI, Fondevila C, Shaw GD, et al. Molecular characterization of rat leukocyte P-selectin glycoprotein ligand-1 and effect of its blockade: protection from ischemia-reperfusion injury in liver transplantation[J]. J Immunol, 2006, 176(1): 616–624 doi: 10.4049/jimmunol.176.1.616
    [96] Dulkanchainun TS, Goss JA, Imagawa DK, et al. Reduction of hepatic ischemia/reperfusion injury by a soluble P-selectin glycoprotein ligand-1[J]. Ann Surg, 1998, 227(6): 832–840 doi: 10.1097/00000658-199806000-00006
    [97] Amersi F, Farmer DG, Shaw GD, et al. P-selectin glycoprotein ligand-1 (rPSGL-Ig)-mediated blockade of CD62 selectin molecules protects rat steatotic liver grafts from ischemia/reperfusion injury[J]. Am J Transplant, 2002, 2(7): 600–608 doi: 10.1034/j.1600-6143.2002.20704.x
    [98] Busuttil RW, Lipshutz GS, Kupiec-Weglinski JW, et al. rPSGL-Ig for improvement of early liver allograft function: a double-blind, placebo-controlled, single-center phase II study[J]. Am J Transplant, 2011, 11(4): 786–797 doi: 10.1111/j.1600-6143.2011.03441.x
    [99] Valentino KL, Gutierrez M, Sanchez R, et al. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes[J]. Int J Clin Pharmacol Ther, 2003, 41(10): 441–449 doi: 10.5414/CPP41441
    [100] Linton SD, Aja T, Armstrong RA, et al. First-in-class pan caspase inhibitor developed for the treatment of liver disease[J]. J Med Chem, 2005, 48(22): 6779–6782 doi: 10.1021/jm050307e
    [101] Baskin-Bey ES, Washburn K, Feng S, et al. Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury[J]. Am J Transplant, 2007, 7(1): 218–225 doi: 10.1111/ajt.2007.7.issue-1
    [102] Song G, Ouyang GL, Bao SD. The activation of Akt/PKB signaling pathway and cell survival[J]. J Cell Mol Med, 2005, 9(1): 59–71 doi: 10.1111/jcmm.2005.9.issue-1
    [103] Covington SM, Bauler LD, Toledo-Pereyra LH. Akt: a therapeutic target in hepatic ischemia-reperfusion injury[J]. J Invest Surg, 2017, 30(1): 47–55 doi: 10.1080/08941939.2016.1206999
    [104] Koh PO. Melatonin prevents hepatic injury-induced decrease in Akt downstream targets phosphorylations[J]. J Pineal Res, 2011, 51(2): 214–219 doi: 10.1111/j.1600-079X.2011.00879.x
    [105] Bertoldo MJ, Faure M, Dupont J, et al. AMPK: a master energy regulator for gonadal function[J]. Front Neurosci, 2015, 9: 235
    [106] Peralta C, Bartrons R, Serafin A, et al. Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat[J]. Hepatology, 2001, 34(6): 1164–1173 doi: 10.1053/jhep.2001.29197
    [107] Ding WX, Zhang Q, Dong YB, et al. Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway[J]. Sci Rep, 2016, 6: 34151 doi: 10.1038/srep34151
    [108] Zhang CZ, Liao Y, Li Q, et al. Recombinant adiponectin ameliorates liver ischemia reperfusion injury via activating the AMPK/eNOS pathway[J]. PLoS One, 2013, 8(6): e66382 doi: 10.1371/journal.pone.0066382
    [109] Lehrke M, Lazar MA. The many faces of PPARγ[J]. Cell, 2005, 123(6): 993–999 doi: 10.1016/j.cell.2005.11.026
    [110] Marion-Letellier R, Savoye G, Ghosh S. Fatty acids, eicosanoids and PPAR gamma[J]. Eur J Pharmacol, 2016, 785: 44–49 doi: 10.1016/j.ejphar.2015.11.004
    [111] Zhou YL, Jia S, Wang CJ, et al. FAM3A is a target gene of peroxisome proliferator-activated receptor gamma[J]. Biochim Biophys Acta, 2013, 1830(8): 4160–4170 doi: 10.1016/j.bbagen.2013.03.029
    [112] Yang WL, Chen J, Meng YH, et al. Novel targets for treating ischemia-reperfusion injury in the liver[J]. Int J Mol Sci, 2018, 19(5): E1302 doi: 10.3390/ijms19051302
    [113] Xu CF, Yu CH, Li YM. Regulation of hepatic microRNA expression in response to ischemic preconditioning following ischemia/reperfusion injury in mice[J]. OMICS, 2009, 13(6): 513–520 doi: 10.1089/omi.2009.0035
    [114] Gehrau RC, Mas VR, Dumur CI, et al. Regulation of molecular pathways in ischemia-reperfusion injury after liver transplantation[J]. Transplantation, 2013, 96(10): 926–934 doi: 10.1097/TP.0b013e3182a20398
    [115] Mard SA, Akbari G, Dianat M, et al. Protective effects of crocin and zinc sulfate on hepatic ischemia-reperfusion injury in rats: a comparative experimental model study[J]. Biomed Pharmacother, 2017, 96: 48–55 doi: 10.1016/j.biopha.2017.09.123
    [116] Peralta C, Hotter G, Closa D, et al. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: role of nitric oxide and adenosine[J]. Hepatology, 1997, 25(4): 934–937 doi: 10.1002/hep.510250424
    [117] Quarrie R, Cramer BM, Lee DS, et al. Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart[J]. J Surg Res, 2011, 165(1): 5–14 doi: 10.1016/j.jss.2010.09.018
    [118] Richards JA, Wigmore SJ, Devey LR. Heme oxygenase system in hepatic ischemia-reperfusion injury[J]. World J Gastroenterol, 2010, 16(48): 6068–6078 doi: 10.3748/wjg.v16.i48.6068
    [119] Liu AD, Fang HS, Wei WW, et al. Ischemic preconditioning protects against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy[J]. Crit Care Med, 2014, 42(12): e762–e771 doi: 10.1097/CCM.0000000000000659
    [120] Rüdiger HA, Graf R, Clavien PA. Sub-lethal oxidative stress triggers the protective effects of ischemic preconditioning in the mouse liver[J]. J Hepatol, 2003, 39(6): 972–977 doi: 10.1016/S0168-8278(03)00415-X
    [121] Rolo AP, Teodoro JS, Peralta C, et al. Prevention of I/R injury in fatty livers by ischemic preconditioning is associated with increased mitochondrial tolerance: the key role of ATPsynthase and mitochondrial permeability transition[J]. Transpl Int, 2009, 22(11): 1081–1090 doi: 10.1111/tri.2009.22.issue-11
    [122] Abu-Amara M, Yang SY, Quaglia A, et al. Role of endothelial nitric oxide synthase in remote ischemic preconditioning of the mouse liver[J]. Liver Transpl, 2011, 17(5): 610–619 doi: 10.1002/lt.v17.5
    [123] Koti RS, Seifalian AM, Davidson BR. Protection of the liver by ischemic preconditioning: a review of mechanisms and clinical applications[J]. Dig Surg, 2003, 20(5): 383–396 doi: 10.1159/000072064
    [124] Gurusamy KS, Kumar Y, Sharma D, et al. Ischaemic preconditioning for liver transplantation[J]. Cochrane Database Syst Rev, 2008, (1): CD006315
    [125] Nadarajah L, Yaqoob MM, McCafferty K. Ischemic conditioning in solid organ transplantation: is it worth giving your right arm for?[J]. Curr Opin Nephrol Hypertens, 2017, 26(6): 467–476 doi: 10.1097/MNH.0000000000000367
    [126] Koneru B, Fisher A, He Y, et al. Ischemic preconditioning in deceased donor liver transplantation: a prospective randomized clinical trial of safety and efficacy[J]. Liver Transpl, 2005, 11(2): 196–202 doi: 10.1002/(ISSN)1527-6473
    [127] Koneru B, Shareef A, Dikdan G, et al. The ischemic preconditioning paradox in deceased donor liver transplantation-evidence from a prospective randomized single blind clinical trial[J]. Am J Transplant, 2007, 7(12): 2788–2796 doi: 10.1111/ajt.2007.7.issue-12
    [128] Theodoraki K, Karmaniolou I, Tympa A, et al. Beyond preconditioning: postconditioning as an alternative technique in the prevention of liver ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2016, 2016: 8235921
    [129] Sun K, Liu ZS, Sun Q. Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning[J]. World J Gastroenterol, 2004, 10(13): 1934–1938 doi: 10.3748/wjg.v10.i13.1934
    [130] Zhang WX, Yin W, Zhang L, et al. Preconditioning and postconditioning reduce hepatic ischemia-reperfusion injury in rats[J]. Hepatobiliary Pancreat Dis Int, 2009, 8(6): 586–590
    [131] Yoon SY, Kim CY, Han HJ, et al. Protective effect of ischemic postconditioning against hepatic ischemic reperfusion injury in rat liver[J]. Ann Surg Treat Res, 2015, 88(5): 241–245 doi: 10.4174/astr.2015.88.5.241
    [132] Lin HC, Lee TK, Tsai CC, et al. Ischemic postconditioning protects liver from ischemia-reperfusion injury by modulating mitochondrial permeability transition[J]. Transplantation, 2012, 93(3): 265–271 doi: 10.1097/TP.0b013e31823ef335
    [133] Wang N, Lu JG, He XL, et al. Effects of ischemic postconditioning on reperfusion injury in rat liver grafts after orthotopic liver transplantation[J]. Hepatol Res, 2009, 39(4): 382–390 doi: 10.1111/hep.2009.39.issue-4
    [134] Kim WH, Lee JH, Ko JS, et al. Effect of remote ischemic postconditioning on patients undergoing living donor liver transplantation[J]. Liver Transpl, 2014, 20(11): 1383–1392 doi: 10.1002/lt.23960
    [135] Ricca L, Lemoine A, Cauchy F, et al. Ischemic postconditioning of the liver graft in adult liver transplantation[J]. Transplantation, 2015, 99(8): 1633–1643 doi: 10.1097/TP.0000000000000685
    [136] Schlegel AA, Kalisvaart M, Muiesan P. Machine perfusion in liver transplantation: an essential treatment or just an expensive toy?[J]. Minerva Anestesiol, 2018, 84(2): 236–245
    [137] Liu Q, Vekemans K, Iania L, et al. Assessing warm ischemic injury of pig livers at hypothermic machine perfusion[J]. J Surg Res, 2014, 186(1): 379–389 doi: 10.1016/j.jss.2013.07.034
    [138] Monbaliu D, Liu Q, Libbrecht L, et al. Preserving the morphology and evaluating the quality of liver grafts by hypothermic machine perfusion: a proof-of-concept study using discarded human livers[J]. Liver Transpl, 2012, 18(12): 1495–1507 doi: 10.1002/lt.v18.12
    [139] Manekeller S, Schuppius A, Stegemann J, et al. Role of perfusion medium, oxygen and rheology for endoplasmic reticulum stress-induced cell death after hypothermic machine preservation of the liver[J]. Transpl Int, 2008, 21(2): 169–177
    [140] Jain S, Xu HZ, Duncan H, et al. Ex-vivo study of flow dynamics and endothelial cell structure during extended hypothermic machine perfusion preservation of livers[J]. Cryobiology, 2004, 48(3): 322–332 doi: 10.1016/j.cryobiol.2004.01.010
    [141] Schlegel A, de Rougemont O, Graf R, et al. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts[J]. J Hepatol, 2013, 58(2): 278–286 doi: 10.1016/j.jhep.2012.10.004
    [142] Gallinat A, Efferz P, Paul A, et al. One or 4 h of " in-house” reconditioning by machine perfusion after cold storage improve reperfusion parameters in porcine kidneys[J]. Transpl Int, 2014, 27(11): 1214–1219 doi: 10.1111/tri.2014.27.issue-11
    [143] Guarrera JV, Henry SD, Samstein B, et al. Hypothermic machine preservation facilitates successful transplantation of " orphan” extended criteria donor livers[J]. Am J Transplant, 2015, 15(1): 161–169 doi: 10.1111/ajt.12958
    [144] Dutkowski P, Schlegel A, de Oliveira M, et al. HOPE for human liver grafts obtained from donors after cardiac death[J]. J Hepatol, 2014, 60(4): 765–772 doi: 10.1016/j.jhep.2013.11.023
    [145] Schlegel A, Muller X, Kalisvaart M, et al. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation[J]. J Hepatol, 2019, 70(1): 50–57