3.5

CiteScore

2.3

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Arbind Kumar Choudhary, Rathinasamy Sheela Devi. Effects of aspartame on hsp70, bcl-2 and bax expression in immune organs of Wistar albino rats[J]. The Journal of Biomedical Research, 2016, 30(5): 427-435. DOI: 10.7555/JBR.30.20140097
Citation: Arbind Kumar Choudhary, Rathinasamy Sheela Devi. Effects of aspartame on hsp70, bcl-2 and bax expression in immune organs of Wistar albino rats[J]. The Journal of Biomedical Research, 2016, 30(5): 427-435. DOI: 10.7555/JBR.30.20140097

Effects of aspartame on hsp70, bcl-2 and bax expression in immune organs of Wistar albino rats

  • Aspartame, a "first generation sweetener", is widely used in a variety of foods, beverages, and medicine. The FDA has determined the acceptable daily intake (ADI) value of aspartame to be 50 mg/kgday, while the JECFA (Joint FAO/WHO Expert Committee on Food Additives) has set this value at 40 mg/kg of body weight/day. Safety issues have been raised about aspartame due to its metabolites, specifically toxicity from methanol and/or its systemic metabolites formaldehyde and formic acid. The immune system is now recognized as a target organ for many xenobiotics, such as drugs and chemicals, which are able to trigger unwanted apoptosis or to alter the regulation of apoptosis. Our previous studies has shown that oral administration of aspartame 40 mg/(kgday) or its metabolites for 90 days increased oxidative stress in immune organs of Wistar albino rats. In this present study, we aimed to clarify whether aspartame consumption over a longer period (90-days) has any effect on the expression of hsp70, bcl-2 and bax at both mRNA transcript and protein expression levels in immune organs. We observed that oral administration of aspartame for 90 days did not cause any apparent DNA fragmentation in immune organs of aspartame treated animals; however, there was a significant increase in hsp70 expression, apart from significant alteration in bcl-2 and bax at both mRNA transcript and protein expression level in the immune organs of aspartame treated animals compared to controls. Hence, the results indicated that hsp70 levels increased in response to oxidative injury induced by aspartame metabolites; however, these metabolites did not induce apoptosis in the immune organs. Furthermore, detailed analyses are needed to elucidate the precise molecular mechanisms involved in these changes.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return