• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Reimhult Erik, Virk Mudassar Mumtaz. Hybrid lipopolymer vesicle drug delivery and release systems[J]. The Journal of Biomedical Research, 2021, 35(4): 301-309. doi: 10.7555/JBR.35.20200206
Citation: Reimhult Erik, Virk Mudassar Mumtaz. Hybrid lipopolymer vesicle drug delivery and release systems[J]. The Journal of Biomedical Research, 2021, 35(4): 301-309. doi: 10.7555/JBR.35.20200206

Hybrid lipopolymer vesicle drug delivery and release systems

doi: 10.7555/JBR.35.20200206
More Information
  • Corresponding author: Erik Reimhult, Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria. Tel/Fax: +43-1-47654-80211/+43-1-47891-12, E-mail: erik.reimhult@boku.ac.at
  • Received: 2020-12-07
  • Revised: 2021-01-04
  • Accepted: 2021-01-26
  • Published: 2021-03-23
  • Issue Date: 2021-07-28
  • Hybrid lipopolymer vesicles are membrane vesicles that can be self-assembled on both the micro- and nano-scale. On the nanoscale, they are potential novel smart materials for drug delivery systems that could combine the relative strengths of liposome and polymersome drug delivery systems without their respective weaknesses. However, little is known about their properties and how they could be tailored. Currently, most methods of investigation are limited to the microscale. Here we provide a brief review on hybrid vesicle systems with a specific focus on recent developments demonstrating that nanoscale hybrid vesicles have different properties from their macroscale counterparts.


  • loading
  • [1]
    Massing U, Fuxius S. Liposomal formulations of anticancer drugs: selectivity and effectiveness[J]. Drug Resist Updat, 2000, 3(3): 171–177. doi: 10.1054/drup.2000.0138
    Barenholz Y. Doxil® — The first FDA-approved nano-drug: lessons learned[J]. J Control Release, 2012, 160(2): 117–134. doi: 10.1016/j.jconrel.2012.03.020
    Mohammadi M, Taghavi S, Abnous K, et al. Hybrid vesicular drug delivery systems for cancer therapeutics[J]. Adv Funct Mater, 2018, 28(36): 1802136. doi: 10.1002/adfm.201802136
    Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer[J]. Mol Oncol, 2018, 12(1): 3–20. doi: 10.1002/1878-0261.12155
    Allen TM. Ligand-targeted therapeutics in anticancer therapy[J]. Nat Rev Cancer, 2002, 2(10): 750–763. doi: 10.1038/nrc903
    Wang W, Cheng D, Gong F, et al. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging[J]. Adv Mater, 2012, 24(1): 115–120. doi: 10.1002/adma.201104066
    Guo X, Li D, Yang G, et al. Thermo-triggered drug release from actively targeting polymer micelles[J]. ACS Appl Mater Interfaces, 2014, 6(11): 8549–8559. doi: 10.1021/am501422r
    Guo X, Shi C, Wang J, et al. PH-triggered intracellular release from actively targeting polymer micelles[J]. Biomaterials, 2013, 34(18): 4544–4554. doi: 10.1016/j.biomaterials.2013.02.071
    Shi C, Guo X, Qu Q, et al. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles[J]. Biomaterials, 2014, 35(30): 8711–8722. doi: 10.1016/j.biomaterials.2014.06.036
    Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones[J]. J Control Release, 2009, 137(1): 78–86. doi: 10.1016/j.jconrel.2009.03.002
    Ross JS, Schenkein DP, Pietrusko R, et al. Targeted therapies for cancer 2004[J]. Am J Clin Pathol, 2004, 122(4): 598–609. doi: 10.1309/5CWPU41AFR1VYM3F
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting[J]. Adv Enzyme Regul, 2001, 41(1): 189–207. doi: 10.1016/S0065-2571(00)00013-3
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers[J]. Nat Rev Drug Discov, 2005, 4(2): 145–160. doi: 10.1038/nrd1632
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013, 12(11): 991–1003. doi: 10.1038/nmat3776
    Barhoumi A, Liu Q, Kohane DS. Ultraviolet light-mediated drug delivery: principles, applications, and challenges[J]. J Control Release, 2015, 219: 31–42. doi: 10.1016/j.jconrel.2015.07.018
    Bixner O, Kurzhals S, Virk M, et al. Triggered release from thermoresponsive polymersomes with superparamagnetic membranes[J]. Materials, 2016, 9(1): 29. doi: 10.3390/ma9010029
    Kamat NP, Robbins GP, Rawson J, et al. A generalized system for photoresponsive membrane rupture in polymersomes[J]. Adv Funct Mater, 2010, 20(16): 2588–2596. doi: 10.1002/adfm.201000659
    Li MH, Keller P. Stimuli-responsive polymer vesicles[J]. Soft Matter, 2009, 5(5): 927–937. doi: 10.1039/b815725a
    Mabrouk E, Cuvelier D, Brochard-Wyart F, et al. Bursting of sensitive polymersomes induced by curling[J]. Proc Natl Acad Sci U S A, 2009, 106(18): 7294–7298. doi: 10.1073/pnas.0813157106
    Mabrouk E, Bonneau S, Jia L, et al. Photosensitization of polymervesicles: a multistep chemical process deciphered by micropipette manipulation[J]. Soft Matter, 2010, 6(19): 4863–4875. doi: 10.1039/c002065f
    Chemin M, Brun PM, Lecommandoux S, et al. Hybrid polymer/lipid vesicles: fine control of the lipid and polymer distribution in the binary membrane[J]. Soft Matter, 2012, 8(10): 2867–2874. doi: 10.1039/c2sm07188f
    Ruysschaert T, Sonnen AFP, Haefele T, et al. Hybrid nanocapsules: interactions of ABA block copolymers with liposomes[J]. J Am Chem Soc, 2005, 127(17): 6242–6247. doi: 10.1021/ja043600x
    Olubummo A, Schulz M, Lechner BD, et al. Controlling the localization of polymer-functionalized nanoparticles in mixed lipid/polymer membranes[J]. ACS Nano, 2012, 6(10): 8713–8727. doi: 10.1021/nn3023602
    Schulz M, Glatte D, Meister A, et al. Hybrid lipid/polymer giant unilamellar vesicles: effects of incorporated biocompatible PIB-PEO block copolymers on vesicle properties[J]. Soft Matter, 2011, 7(18): 8100–8110. doi: 10.1039/c1sm05725a
    Cheng Z, Elias DR, Kamat NP, et al. Improved tumor targeting of polymer-based nanovesicles using polymer-lipid blends[J]. Bioconjugate Chem, 2011, 22(10): 2021–2029. doi: 10.1021/bc200214g
    Cheng Z, Tsourkas A. Paramagnetic porous polymersomes[J]. Langmuir, 2008, 24(15): 8169–8173. doi: 10.1021/la801027q
    Nam J, Vanderlick TK, Beales PA. Formation and dissolution of phospholipid domains with varying textures in hybrid lipo-polymersomes[J]. Soft Matter, 2012, 8(30): 7982–7988. doi: 10.1039/c2sm25646k
    Nam J, Beales PA, Vanderlick TK. Giant phospholipid/block copolymer hybrid vesicles: mixing behavior and domain formation[J]. Langmuir, 2011, 27(1): 1–6. doi: 10.1021/la103428g
    Virk MM, Reimhult E. Phospholipase A2-induced degradation and release from lipid-containing polymersomes[J]. Langmuir, 2018, 34(1): 395–405. doi: 10.1021/acs.langmuir.7b03893
    Lim SK, de Hoog HP, Parikh AN, et al. Hybrid, nanoscale phospholipid/block copolymer vesicles[J]. Polymers, 2013, 5(3): 1102–1114. doi: 10.3390/polym5031102
    Schulz M, Olubummo A, Bacia K, et al. Lateral surface engineering of hybrid lipid-BCP vesicles and selective nanoparticle embedding[J]. Soft Matter, 2014, 10(6): 831–839. doi: 10.1039/C3SM52040D
    Chen D, Santore MM. Hybrid copolymer-phospholipid vesicles: phase separation resembling mixed phospholipid lamellae, but with mechanical stability and control[J]. Soft Matter, 2015, 11(13): 2617–2626. doi: 10.1039/C4SM02502D
    Dao TPT, Fernandes F, Ibarboure E, et al. Modulation of phase separation at the micron scale and nanoscale in giant polymer/lipid hybrid unilamellar vesicles (GHUVs)[J]. Soft Matter, 2017, 13(3): 627–637. doi: 10.1039/C6SM01625A
    Dao TPT, Brûlet A, Fernandes F, et al. Mixing block copolymers with phospholipids at the nanoscale: from hybrid polymer/lipid wormlike micelles to vesicles presenting lipid nanodomains[J]. Langmuir, 2017, 33(7): 1705–1715. doi: 10.1021/acs.langmuir.6b04478
    Le Meins JF, Schatz C, Lecommandoux S, et al. Hybrid polymer/lipid vesicles: state of the art and future perspectives[J]. Mater Today, 2013, 16(10): 397–402. doi: 10.1016/j.mattod.2013.09.002
    Winzen S, Bernhardt M, Schaeffel D, et al. Submicron hybrid vesicles consisting of polymer-lipid and polymer-cholesterol blends[J]. Soft Matter, 2013, 9(25): 5883–5890. doi: 10.1039/c3sm50733e
    Dao TPT, Fernandes F, Er-Rafik M, et al. Phase separation and nanodomain formation in hybrid polymer/lipid vesicles[J]. ACS Macro Lett, 2015, 4(2): 182–186. doi: 10.1021/mz500748f
    Virk MM, Hofmann B, Reimhult E. Formation and characteristics of lipid-blended block copolymer bilayers on a solid support investigated by quartz crystal microbalance and atomic force microscopy[J]. Langmuir, 2019, 35(3): 739–749. doi: 10.1021/acs.langmuir.8b03597
    Dimova R, Seifert U, Pouligny B, et al. Hyperviscous diblock copolymer vesicles[J]. Eur Phys J E, 2002, 7(3): 241–250. doi: DimovaR,SeifertU,PoulignyB,etal.Hyperviscousdiblockcopolymervesicles[J]
    Evans E, Heinrich V, Ludwig F, et al. Dynamic tension spectroscopy and strength of biomembranes[J]. Biophys J, 2003, 85(4): 2342–2350. doi: 10.1016/S0006-3495(03)74658-X
    Schulz M, Werner S, Bacia K, et al. Controlling molecular recognition with lipid/polymer domains in vesicle membranes[J]. Angew Chem Int Ed, 2013, 52(6): 1829–1833. doi: 10.1002/anie.201204959
    Shen W, Hu J, Hu X. Impact of amphiphilic triblock copolymers on stability and permeability of phospholipid/polymer hybrid vesicles[J]. Chem Phys Lett, 2014, 600: 56–61. doi: 10.1016/j.cplett.2014.03.057
    Amstad E, Kohlbrecher J, Müller E, et al. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes[J]. Nano Lett, 2011, 11(4): 1664–1670. doi: 10.1021/nl2001499
    Amstad E, Reimhult E. Nanoparticle actuated hollow drug delivery vehicles[J]. Nanomedicine, 2012, 7(1): 145–164. doi: 10.2217/nnm.11.167
    Shirmardi Shaghasemi B, Virk MM, Reimhult E. Optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure[J]. Sci Rep, 2017, 7(1): 7474. doi: 10.1038/s41598-017-06980-9
    Thévenot J, Oliveira H, Sandre O, et al. Magnetic responsive polymer composite materials[J]. Chem Soc Rev, 2013, 42(17): 7099–7116. doi: 10.1039/c3cs60058k
    Sanson C, Diou O, Thévenot J, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy[J]. ACS Nano, 2011, 5(2): 1122–1140. doi: 10.1021/nn102762f
    Bixner O, Bello G, Virk M, et al. Magneto-thermal release from nanoscale unilamellar hybrid vesicles[J]. ChemNanoMat, 2016, 2(12): 1111–1120. doi: 10.1002/cnma.201600278
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (243) PDF downloads(28) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint