Citation: | Konishi Colin T., Long Chengzu. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases[J]. The Journal of Biomedical Research, 2021, 35(2): 148-162. doi: 10.7555/JBR.34.20200105 |
[1] |
WHO. Genes and human diseases[EB/OL]. [2019-03-21]. http://www.who.int/genomics/public/geneticdiseases/en/.
|
[2] |
Prakash V, Moore M, Yáñez-Muñoz RJ. Current progress in therapeutic gene editing for monogenic diseases[J]. Mol Ther, 2016, 24(3): 465–474. doi: 10.1038/mt.2016.5
|
[3] |
Ferla R, Calò V, Cascio S, et al. Founder mutations in BRCA1 and BRCA2 genes[J]. Ann Oncol, 2007, 18 Suppl 6: vi93–vi98. doi: 10.1093/annonc/mdm234
|
[4] |
Strehlow V, Heyne HO, Vlaskamp DRM, et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype[J]. Brain, 2019, 142(1): 80–92. doi: 10.1093/brain/awy304
|
[5] |
Dravet C, Oguni H. Dravet syndrome (severe myoclonic epilepsy in infancy)[J]. Handbook Clin Neurol, 2013, 111: 627–633. doi: 10.1016/B978-0-444-52891-9.00065-8
|
[6] |
Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application[J]. Mol Ther - Nucleic Acids, 2019, 16: 326–334. doi: 10.1016/j.omtn.2019.02.027
|
[7] |
Rath D, Amlinger L, Rath A, et al. The CRISPR-Cas immune system: biology, mechanisms and applications[J]. Biochimie, 2015, 117: 119–128. doi: 10.1016/j.biochi.2015.03.025
|
[8] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816–821. doi: 10.1126/science.1225829
|
[9] |
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385): 331–338. doi: 10.1038/nature10886
|
[10] |
Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity[J]. Mol Cell, 2014, 54(2): 234–244. doi: 10.1016/j.molcel.2014.03.011
|
[11] |
Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR–Cas systems[J]. Nat Rev Microbiol, 2011, 9(6): 467–477. doi: 10.1038/nrmicro2577
|
[12] |
Terns MP, Terns RM. CRISPR-based adaptive immune systems[J]. Curr Opin Microbiol, 2011, 14(3): 321–327. doi: 10.1016/j.mib.2011.03.005
|
[13] |
Gasiunas G, Barrangou R, Horvath P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109(39): E2579–E2586. doi: 10.1073/pnas.1208507109
|
[14] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819–823. doi: 10.1126/science.1231143
|
[15] |
Mali P, Yang LH, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823–826. doi: 10.1126/science.1232033
|
[16] |
Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602–607. doi: 10.1038/nature09886
|
[17] |
Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells[J]. Mol Ther, 2016, 24(3): 645–654. doi: 10.1038/mt.2016.8
|
[18] |
Gleditzsch D, Pausch P, Müller-Esparza H, et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures[J]. RNA Biol, 2019, 16(4): 504–517. doi: 10.1080/15476286.2018.1504546
|
[19] |
Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57–63. doi: 10.1038/nature26155
|
[20] |
Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nat Biotechnol, 2015, 33(12): 1293–1298. doi: 10.1038/nbt.3404
|
[21] |
Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259–1262. doi: 10.1126/science.aas9129
|
[22] |
Wang YM, Liu KI, Sutrisnoh NAB, et al. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells[J]. Genome Biol, 2018, 19: 62. doi: 10.1186/s13059-018-1445-x
|
[23] |
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759–771. doi: 10.1016/j.cell.2015.09.038
|
[24] |
Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935–949. doi: 10.1016/j.cell.2014.02.001
|
[25] |
Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annu Rev Biochem, 2010, 79: 181–211. doi: 10.1146/annurev.biochem.052308.093131
|
[26] |
Chapman JR, Taylor MRG, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice[J]. Mol Cell, 2012, 47(4): 497–510. doi: 10.1016/j.molcel.2012.07.029
|
[27] |
Scully R, Panday A, Elango R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nat Rev Mol Cell Biol, 2019, 20(11): 698–714. doi: 10.1038/s41580-019-0152-0
|
[28] |
Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells[J]. EMBO J, 1998, 17(18): 5497–5508. doi: 10.1093/emboj/17.18.5497
|
[29] |
Liu MJ, Rehman S, Tang XD, et al. Methodologies for improving HDR efficiency[J]. Front Genet, 2019, 9: 691. doi: 10.3389/fgene.2018.00691
|
[30] |
Li K, Wang G, Andersen T, et al. Optimization of genome engineering approaches with the CRISPR/Cas9 system[J]. PLoS One, 2014, 9(8): e105779. doi: 10.1371/journal.pone.0105779
|
[31] |
Song F, Stieger K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks[J]. Mol Ther - Nucleic Acids, 2017, 7: 53–60. doi: 10.1016/j.omtn.2017.02.006
|
[32] |
Richardson CD, Ray GJ, DeWitt MA, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA[J]. Nat Biotechnol, 2016, 34(3): 339–344. doi: 10.1038/nbt.3481
|
[33] |
Schumann K, Lin S, Boyer E, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins[J]. Proc Natl Acad Sci U S A, 2015, 112(33): 10437–10442. doi: 10.1073/pnas.1512503112
|
[34] |
Zhang JP, Li XL, Li GH, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage[J]. Genome Biol, 2017, 18(1): 35. doi: 10.1186/s13059-017-1164-8
|
[35] |
Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy[J]. Prog Retin Eye Res, 2010, 29(5): 398–427. doi: 10.1016/j.preteyeres.2010.04.002
|
[36] |
Maguire AM, Russell S, Wellman JA, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation–associated inherited retinal dystrophy: results of phase 1 and 3 trials[J]. Ophthalmology, 2019, 126(9): 1273–1285. doi: 10.1016/j.ophtha.2019.06.017
|
[37] |
Jo DH, Song DW, Cho CS, et al. CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis[J]. Sci Adv, 2019, 5(10): eaax1210. doi: 10.1126/sciadv.aax1210
|
[38] |
Gordon N. Ornithine transcarbamylase deficiency: a urea cycle defect[J]. Eur J Paediatr Neur, 2003, 7(3): 115–121. doi: 10.1016/S1090-3798(03)00040-0
|
[39] |
Yang Y, Wang LL, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice[J]. Nat Biotechnol, 2016, 34(3): 334–338. doi: 10.1038/nbt.3469
|
[40] |
Aponte JL, Sega GA, Hauser LJ, et al. Point mutations in the murine fumarylacetoacetate hydrolase gene: animal models for the human genetic disorder hereditary tyrosinemia type 1[J]. Proc Natl Acad Sci U S A, 2001, 98(2): 641–645. doi: 10.1073/pnas.98.2.641
|
[41] |
Paulk NK, Wursthorn K, Wang ZY, et al. Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo[J]. Hepatology, 2010, 51(4): 1200–1208. doi: 10.1002/hep.23481
|
[42] |
VanLith CJ, Guthman RM, Nicolas CT, et al. Ex vivo hepatocyte reprograming promotes homology-directed DNA repair to correct metabolic disease in mice after transplantation[J]. Hepatol Commun, 2019, 3(4): 558–573. doi: 10.1002/hep4.1315
|
[43] |
Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo[J]. Nat Biotechnol, 2016, 34(3): 328–333. doi: 10.1038/nbt.3471
|
[44] |
Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining[J]. Transl Cancer Res, 2013, 2(3): 130–143. doi: 10.3978/j.issn.2218-676X.2013.04.02
|
[45] |
Brandsma I, Van Gent DC. Pathway choice in DNA double strand break repair: observations of a balancing act[J]. Genome Integr, 2012, 3(1): 9. doi: 10.1186/2041-9414-3-9
|
[46] |
Riley JL. PD-1 signaling in primary T cells[J]. Immunol Rev, 2009, 229(1): 114–125. doi: 10.1111/j.1600-065X.2009.00767.x
|
[47] |
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677–704. doi: 10.1146/annurev.immunol.26.021607.090331
|
[48] |
Hu WH, Zi ZG, Jin YL, et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions[J]. Cancer Immunol Immunother, 2019, 68(3): 365–377. doi: 10.1007/s00262-018-2281-2
|
[49] |
Chinese PLA General Hospital. Study of CRISPR-Cas9 mediated PD-1 and TCR gene-knocked out mesothelin-directed CAR-T cells in patients with mesothelin positive multiple solid tumors[EB/OL]. [2018-06-04]. https://clinicaltrials.gov/ct2/show/record/NCT03545815.
|
[50] |
Antony JS, Haque AKMA, Lamsfus‐Calle A, et al. CRISPR/Cas9 system: a promising technology for the treatment of inherited and neoplastic hematological diseases[J]. Adv Cell Gene Ther, 2018, 1(1): e10. doi: 10.1002/acg2.10
|
[51] |
Cavazzana M, Antoniani C, Miccio A. Gene therapy for β-hemoglobinopathies[J]. Mol Ther, 2017, 25(5): 1142–1154. doi: 10.1016/j.ymthe.2017.03.024
|
[52] |
Sankaran VG, Orkin SH. The switch from fetal to adult hemoglobin[J]. Cold Spring Harb Perspect Med, 2013, 3(1): a011643. doi: 10.1101/cshperspect.a011643
|
[53] |
Sokolova A, Mararenko A, Rozin A, et al. Hereditary persistence of hemoglobin F is protective against red cell sickling. A case report and brief review[J]. Hematol/Oncol Stem Cell Ther, 2019, 12(4): 215–219. doi: 10.1016/j.hemonc.2017.09.003
|
[54] |
Xu J, Peng C, Sankaran VG, et al. Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing[J]. Science, 2011, 334(6058): 993–996. doi: 10.1126/science.1211053
|
[55] |
Bjurström CF, Mojadidi M, Phillips J, et al. Reactivating fetal hemoglobin expression in human adult erythroblasts through BCL11A knockdown using targeted endonucleases[J]. Mol Ther - Nucleic Acids, 2016, 5: e351. doi: 10.1038/mtna.2016.52
|
[56] |
Vertex Pharmaceuticals Incorporated. A safety and efficacy study evaluating CTX001 in subjects with severe sickle cell disease[EB/OL]. [2018-11-19]. https://clinicaltrials.gov/ct2/show/NCT03745287.
|
[57] |
CRISPR therapeutics and vertex announce positive safety and efficacy data from first two patients treated with investigational CRISPR/Cas9 gene-editing therapy CTX001® for severe hemoglobinopathies[EB/OL]. [2019-11-19]. https://investors.vrtx.com/news-releases/news-release-details/crispr-therapeutics-and-vertex-announce-positive-safety-and.
|
[58] |
Scotti MM, Swanson MS. RNA mis-splicing in disease[J]. Nat Rev Genet, 2016, 17(1): 19–32. doi: 10.1038/nrg.2015.3
|
[59] |
Faustino NA, Cooper TA. Pre-mRNA splicing and human disease[J]. Genes Dev, 2003, 17(4): 419–437. doi: 10.1101/gad.1048803
|
[60] |
Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J]. Nat Med, 2019, 25(2): 229–233. doi: 10.1038/s41591-018-0327-9
|
[61] |
Geller AM, Sieving PA. Assessment of foveal cone photoreceptors in Stargardt's macular dystrophy using a small dot detection task[J]. Vision Res, 1993, 33(11): 1509–1524. doi: 10.1016/0042-6989(93)90144-L
|
[62] |
Allergan. Single ascending dose study in participants with LCA10[EB/OL]. [2019-03-13]. https://clinicaltrials.gov/ct2/show/NCT03872479.
|
[63] |
Campbell KP, Kahl SD. Association of dystrophin and an integral membrane glycoprotein[J]. Nature, 1989, 338(6212): 259–262. doi: 10.1038/338259a0
|
[64] |
Yokota T, Duddy W, Partridge T. Optimizing exon skipping therapies for DMD[J]. Acta Myol, 2007, 26(3): 179–184. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949311/
|
[65] |
Long CZ, Li H, Tiburcy M, et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing[J]. Sci Adv, 2018, 4(1): eaap9004. doi: 10.1126/sciadv.aap9004
|
[66] |
Shen MW, Arbab M, Hsu JY, et al. Predictable and precise template-free CRISPR editing of pathogenic variants[J]. Nature, 2018, 563(7733): 646–651. doi: 10.1038/s41586-018-0686-x
|
[67] |
Chakrabarti AM, Henser-Brownhill T, Monserrat J, et al. Target-specific precision of CRISPR-mediated genome editing[J]. Mol Cell, 2019, 73(4): 699–713. doi: 10.1016/j.molcel.2018.11.031
|
[68] |
Allen F, Crepaldi L, Alsinet C, et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks[J]. Nat Biotechnol, 2019, 37(1): 64–72. doi: 10.1038/nbt.4317
|
[69] |
Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship[J]. Nat Rev Cancer, 2018, 18(3): 168–185. doi: 10.1038/nrc.2017.116
|
[70] |
Ceccaldi R, Sarangi P, D'Andrea AD. The Fanconi anaemia pathway: new players and new functions[J]. Nat Rev Mol Cell Biol, 2016, 17(6): 337–349. doi: 10.1038/nrm.2016.48
|
[71] |
Román-Rodríguez FJ, Ugalde L, Álvarez L, et al. NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaks efficiently corrects mutations in HSPCs from patients with fanconi anemia[J]. Cell Stem Cell, 2019, 25(5): 607–621. doi: 10.1016/j.stem.2019.08.016
|
[72] |
Sfeir A, Symington LS. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway?[J]. Trends Biochem Sci, 2015, 40(11): 701–714. doi: 10.1016/j.tibs.2015.08.006
|
[73] |
Truong LN, Li YJ, Shi LZ, et al. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells[J]. Proc Natl Acad Sci U S A, 2013, 110(19): 7720–7725. doi: 10.1073/pnas.1213431110
|
[74] |
Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation[J]. Trends Genet, 2014, 30(3): 85–94. doi: 10.1016/j.tig.2014.01.001
|
[75] |
Moreira ES, Wiltshire TJ, Faulkner G, et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin[J]. Nat Genet, 2000, 24(2): 163–166. doi: 10.1038/72822
|
[76] |
Iyer S, Suresh S, Guo DS, et al. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break[J]. Nature, 2019, 568(7753): 561–565. doi: 10.1038/s41586-019-1076-8
|
[77] |
Nakade S, Tsubota T, Sakane Y, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9[J]. Nat Commun, 2014, 5: 5560. doi: 10.1038/ncomms6560
|
[78] |
Yao X, Wang X, Liu JL, et al. CRISPR/Cas9 – mediated precise targeted integration in vivo using a double cut donor with short homology arms[J]. EBioMedicine, 2017, 20: 19–26. doi: 10.1016/j.ebiom.2017.05.015
|
[79] |
Lau CH, Suh Y. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease[J]. F1000Res, 2017, 6: 2153. doi: 10.12688/f1000research.11243.1
|
[80] |
Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection[J]. Mol Ther, 2008, 16(6): 1073–1080. doi: 10.1038/mt.2008.76
|
[81] |
Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes[J]. Annu Rev Virol, 2014, 1: 427–451. doi: 10.1146/annurev-virology-031413-085355
|
[82] |
Moreno AM, Fu X, Zhu J, et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation[J]. Mol Ther, 2018, 26(7): 1818–1827. doi: 10.1016/j.ymthe.2018.04.017
|
[83] |
Nishiguchi KM, Fujita K, Miya F, et al. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice[J]. Nat Commun, 2020, 11(1): 482. doi: 10.1038/s41467-019-14181-3
|
[84] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420–424. doi: 10.1038/nature17946
|
[85] |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464–471. doi: 10.1038/nature24644
|
[86] |
Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8): eaao4774. doi: 10.1126/sciadv.aao4774
|
[87] |
Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9): 843–846. doi: 10.1038/nbt.4172
|
[88] |
Ramirez F, Dietz HC. Marfan syndrome: from molecular pathogenesis to clinical treatment[J]. Curr Opin Genet Dev, 2007, 17(3): 252–258. doi: 10.1016/j.gde.2007.04.006
|
[89] |
Pepe G, Giusti B, Sticchi E, Abbate R, Gensini GF, Nistri S. Marfan syndrome: current perspectives[J]. Appl Clin Genet, 2016, 9: 55–65. doi: 10.2147/TACG.S96233
|
[90] |
Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet, 2018, 19(12): 770–788. doi: 10.1038/s41576-018-0059-1
|
[91] |
Zeng YT, Li JN, Li GL, et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos[J]. Mol Ther, 2018, 26(11): 2631–2637. doi: 10.1016/j.ymthe.2018.08.007
|
[92] |
Billon P, Bryant EE, Joseph SA, et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP Codons[J]. Mol Cell, 2017, 67(6): 1068–1079. doi: 10.1016/j.molcel.2017.08.008
|
[93] |
Kuscu C, Parlak M, Tufan T, et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations[J]. Nat Methods, 2017, 14(7): 710–712. doi: 10.1038/nmeth.4327
|
[94] |
Lim CKW, Gapinske M, Brooks AK, et al. Treatment of a mouse model of ALS by in vivo base editing[J]. Mol Ther, 2020, 28(4): 1177–1189. doi: 10.1016/j.ymthe.2020.01.005
|
[95] |
Wang XJ, Liu ZW, Li GL, et al. Efficient gene silencing by adenine base editor-mediated start codon mutation[J]. Mol Ther, 2020, 28(2): 431–440. doi: 10.1016/j.ymthe.2019.11.022
|
[96] |
Ratjen F, Bell SC, Rowe SM, et al. Cystic fibrosis[J]. Nat Rev Dis Primers, 2015, 1(1): 15010. doi: 10.1038/nrdp.2015.10
|
[97] |
Geurts MH, De Poel E, Amatngalim GD, et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank[J]. Cell Stem Cell, 2020, 26(4): 503–510. doi: 10.1016/j.stem.2020.01.019
|
[98] |
Green DM, McDougal KE, Blackman SM, et al. Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients[J]. Respir Res, 2010, 11(1): 140. doi: 10.1186/1465-9921-11-140
|
[99] |
Ferec C, Cutting GR. Assessing the disease-liability of mutations in CFTR[J]. Cold Spring Harb Perspect Med, 2012, 2(12): a009480. doi: 10.1101/cshperspect.a009480
|
[100] |
Grünewald J, Zhou RB, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7): 861–864. doi: 10.1038/s41587-020-0535-y
|
[101] |
Zhang XH, Zhu BY, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7): 856–860. doi: 10.1038/s41587-020-0527-y
|
[102] |
Sakata RC, Ishiguro S, Mori H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nat Biotechnol, 2020, 38(7): 865–869. doi: 10.1038/s41587-020-0509-0
|
[103] |
Wienert B, Martyn GE, Funnell APW, et al. Wake-up sleepy gene: reactivating fetal globin for β-hemoglobinopathies[J]. Trends Genet, 2018, 34(12): 927–940. doi: 10.1016/j.tig.2018.09.004
|
[104] |
Martyn GE, Wienert B, Kurita R, et al. A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site[J]. Blood, 2019, 133(8): 852–856. doi: 10.1182/blood-2018-07-863951
|
[105] |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149–157. doi: 10.1038/s41586-019-1711-4
|
[106] |
Bostick B, Yue YP, Long C, et al. Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression[J]. Circ Res, 2008, 102(1): 121–130. doi: 10.1161/CIRCRESAHA.107.162982
|
[107] |
Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer[J]. Mol Ther, 2020, 28(3): 723–746. doi: 10.1016/j.ymthe.2019.12.010
|
[108] |
Hanlon KS, Kleinstiver BP, Garcia SP, et al. High levels of AAV vector integration into CRISPR-induced DNA breaks[J]. Nat Commun, 2019, 10(1): 4439. doi: 10.1038/s41467-019-12449-2
|
[109] |
Mangeot PE, Risson V, Fusil F, et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins[J]. Nat Commun, 2019, 10(1): 45. doi: 10.1038/s41467-018-07845-z
|
[110] |
Zhang LM, Wang P, Feng Q, et al. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy[J]. NPG Asia Mater, 2017, 9(10): e441. doi: 10.1038/AM.2017.185
|
[111] |
Cheng WJ, Chen LC, Ho HO, et al. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy[J]. Int J Nanomedicine, 2018, 13: 7079–7094. doi: 10.2147/IJN.S181440
|
[112] |
Zhang XH, Tee LY, Wang XG, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering[J]. Mol Ther - Nucleic Acids, 2015, 4: e264. doi: 10.1038/mtna.2015.37
|
[113] |
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827–832. doi: 10.1038/nbt.2647
|
[114] |
Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24(1): 132–141. doi: 10.1101/gr.162339.113
|
[115] |
Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nat Methods, 2015, 12(3): 237–243. doi: 10.1038/nmeth.3284
|
[116] |
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587): 490–495. doi: 10.1038/nature16526
|
[117] |
Slaymaker IM, Gao LY, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268): 84–88. doi: 10.1126/science.aad5227
|
[118] |
Kim D, Kim DE, Lee G, et al. Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nat Biotechnol, 2019, 37(4): 430–435. doi: 10.1038/s41587-019-0050-1
|
[119] |
Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437): 292–295. doi: 10.1126/science.aaw7166
|
[120] |
Zuo EW, Sun YD, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289–292. doi: 10.1126/science.aav9973
|
[121] |
Grünewald J, Zhou RH, Iyer S, et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities[J]. Nat Biotechnol, 2019, 37(9): 1041–1048. doi: 10.1038/s41587-019-0236-6
|
[122] |
Grünewald J, Zhou RH, Garcia SP, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756): 433–437. doi: 10.1038/s41586-019-1161-z
|
[123] |
Zhou CY, Sun YD, Yan R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764): 275–278. doi: 10.1038/s41586-019-1314-0
|
[124] |
Lee HK, Willi M, Miller SM, et al. Targeting fidelity of adenine and cytosine base editors in mouse embryos[J]. Nat Commun, 2018, 9(1): 4804. doi: 10.1038/s41467-018-07322-7
|
[125] |
Liang PP, Xie XW, Zhi SY, et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq[J]. Nat Commun, 2019, 10(1): 67. doi: 10.1038/s41467-018-07988-z
|