[1] Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis[J]. J Atheroscler Thromb, 2003, 10(2): 63–71.
[2] Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3): 341–355.
[3] Libby P. Inflammation in atherosclerosis[J]. Nature, 2002, 420(6917): 868–874.
[4] Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res, 2016, 118(4): 653–667.
[5] Dollery CM, Libby P. Atherosclerosis and proteinase activation[J]. Cardiovasc Res, 2006, 69(3): 625–635.
[6] Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability[J]. Arterioscler Thromb Vasc Biol, 2008, 28(12): 2108–2114.
[7] Galis ZS, Sukhova GK, Kranzhöfer R, et al. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases[J]. Proc Natl Acad Sci U S A, 1995, 92(2): 402–406.
[8] Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques[J]. J Clin Invest, 1994, 94(6): 2493–2503.
[9] Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly[J]. Circ Res, 2002, 90(3): 251–262.
[10] Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases[J]. Vascul Pharmacol, 2012, 56(5–6): 232–244.
[11] Sinha S, Frishman WH. Matrix metalloproteinases and abdominal aortic aneurysms: a potential therapeutic target[J]. J Clin Pharmacol, 1998, 38(12): 1077–1088.
[12] Wang Z, Zhang J, Li H, et al. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models[J]. Sci Rep, 2016, 6(1): 26942.
[13] Yu Y, Koike T, Kitajima S, et al. Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions[J]. Histol Histopathol, 2008, 23(12): 1503–1516.
[14] Pardo A, Selman M. MMP-1: the elder of the family[J]. Int J Biochem Cell Biol, 2005, 37(2): 283–288.
[15] Nikkari ST, Geary RL, Hatsukami T, et al. Expression of collagen, interstitial collagenase, and tissue inhibitor of metalloproteinases-1 in restenosis after carotid endarterectomy[J]. Am J Pathol, 1996, 148(3): 777–783.
[16] Sukhova GK, Schönbeck U, Rabkin E, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques[J]. Circulation, 1999, 99(19): 2503–2509.
[17] Ye S, Gale CR, Martyn CN. Variation in the matrix metalloproteinase-1 gene and risk of coronary heart disease[J]. Eur Heart J, 2003, 24(18): 1668–1671.
[18] Pearce E, Tregouet DA, Samnegård A, et al. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction[J]. Circ Res, 2005, 97(10): 1070–1076.
[19] Irizarry E, Newman KM, Gandhi RH, et al. Demonstration of interstitial collagenase in abdominal aortic aneurysm disease[J]. J Surg Res, 1993, 54(6): 571–574.
[20] Knox JB, Sukhova GK, Whittemore AD, et al. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases[J]. Circulation, 1997, 95(1): 205–212.
[21] Vincenti MP, Coon CI, Mengshol JA, et al. Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1 (matrix metalloproteinase-1)[J]. Biochem J, 1998, 331(Pt 1): 341–346.
[22] Lemaître V, O’Byrne TK, Borczuk AC, et al. ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis[J]. J Clin Invest, 2001, 107(10): 1227–1234.
[23] Fan J, Kitajima S, Watanabe T, et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine[J]. Pharmacol Ther, 2015, 146: 104–119.
[24] Fan J, Watanabe T. Transgenic rabbits as therapeutic protein bioreactors and human disease models[J]. Pharmacol Ther, 2003, 99(3): 261–282.
[25] Fan J, Wang X, Wu L, et al. Macrophage-specific overexpression of human matrix metalloproteinase-12 in transgenic rabbits[J]. Transgenic Res, 2004, 13(3): 261–269.
[26] Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, et al. Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities[J]. Proc Natl Acad Sci U S A, 2002, 99(10): 6883–6888.
[27] Koike T, Kitajima S, Yu Y, et al. Human C-reactive protein does not promote atherosclerosis in transgenic rabbits[J]. Circulation, 2009, 120(21): 2088–2094.
[28] Zhang J, Niimi M, Yang D, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1068–1075.
[29] Liang J, Liu E, Yu Y, et al. Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits[J]. Circulation, 2006, 113(16): 1993–2001.
[30] Bi Y, Zhong H, Xu K, et al. Development of a novel rabbit model of abdominal aortic aneurysm via a combination of periaortic calcium chloride and elastase incubation[J]. PLoS One, 2013, 8(7): e68476.
[31] Miyake T, Aoki M, Masaki H, et al. Regression of abdominal aortic aneurysms by simultaneous inhibition of nuclear factor kappaB and ets in a rabbit model[J]. Circ Res, 2007, 101(11): 1175–1184.
[32] Chen Y, Waqar AB, Nishijima K, et al. Macrophage-derived MMP-9 enhances the vascular calcification and progression of atherosclerotic lesions in transgenic rabbits[J]. FASEB J, 2019, (in press).
[33] Matsumoto S, Kobayashi T, Katoh M, et al. Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: relationship to lesion development[J]. Am J Pathol, 1998, 153(1): 109–119.