[1] Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration[J]. Lancet, 2012, 379(9827): 1728–1738.
[2] Sobrin L, Seddon JM. Nature and nurture-genes and environment-predict onset and progression of macular degeneration[J]. Prog Retin Eye Res, 2014, 40: 1–15.
[3] Rakoczy EP, Lai CM, Magno AL, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial[J]. Lancet, 2015, 386(10011): 2395–2403.
[4] Ding XY, Patel M, Chan CC. Molecular pathology of age-related macular degeneration[J]. Prog Retin Eye Res, 2009, 28(1): 1–18.
[5] Velez-Montoya R, Oliver SC, Olson JL, et al. Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention[J]. Retina, 2014, 34(3): 423–441.
[6] Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies[J]. Ophthalmology, 2014, 121(1): 193–201.
[7] The CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2011, 364(20): 1897–1908.
[8] Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013, 9(9): e1003777.
[9] Zlotorynski E. Non-coding RNA: circular RNAs promote transcription[J]. Nat Rev Mol Cell Biol, 2015, 16(4): 206.
[10] Lyu D, Huang SL. The emerging role and clinical implication of human exonic circular RNA[J]. RNA Biol, 2017, 14(8): 1000–1006.
[11] Salzman J. Circular RNA expression: its potential regulation and function[J]. Trends Genet, 2016, 32(5): 309–316.
[12] Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun, 2016, 7: 12429.
[13] Zhong ZY, Huang MG, Lv MX, et al. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway[J]. Cancer Lett, 2017, 403: 305–317.
[14] Shan K, Liu C, Liu BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629–1642.
[15] Lambert V, Lecomte J, Hansen S, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice[J]. Nat Protoc, 2013, 8(11): 2197–2211.
[16] Zhao C, Yasumura D, Li XY, et al. mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice[J]. J Clin Invest, 2011, 121(1): 369–383.
[17] Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Genet, 2012, 13(4): 271–282.
[18] Bishop PN. The role of extracellular matrix in retinal vascular development and preretinal neovascularization[J]. Exp Eye Res, 2015, 133: 30–36.
[19] Zhang LW, Liu SH, Wang JH, et al. Differential expressions of micrornas and transfer RNA-derived small RNAs: potential targets of choroidal neovascularization[J]. Curr Eye Res, 2019, 44(11): 1226–1235.
[20] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384–388.
[21] Yu DY, Yu PK, Cringle SJ, et al. Functional and morphological characteristics of the retinal and choroidal vasculature[J]. Prog Retin Eye Res, 2014, 40: 53–93.
[22] Campochiaro PA. Ocular neovascularization[J]. J Mol Med (Berl), 2013, 91(3): 311–321.
[23] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333–338.
[24] Du WW, Yang WN, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18): 1402–1412.
[25] Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013, 73(18): 5609–5612.
[26] Boeckel JN, Jaé N, Heumuller AW, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA[J]. Circ Res, 2015, 117(10): 884–890.
[27] Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J]. Theranostics, 2017, 7(11): 2863–2877.
[28] Wu Y, Zhang Y, Zhang Y, et al. CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a[J]. Cell Biol Int, 2017, 41(12): 1283–1289.
[29] Zou MS, Huang CX, Li XZ, et al. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection[J]. Oncotarget, 2017, 8(47): 81825–81837.
[30] Eble JA, Niland S. The extracellular matrix of blood vessels[J]. Curr Pharm Des, 2009, 15(12): 1385–1400.
[31] Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics[J]. Physiol Rev, 2009, 89(3): 957–989.
[32] Zhang Y, Cai SW, Jia YR, et al. Decoding noncoding RNAs: role of microRNAs and long noncoding RNAs in ocular neovascularization[J]. Theranostics, 2017, 7(12): 3155–3167.
[33] Mohr AM, Mott JL. Overview of microRNA biology[J]. Semin Liver Dis, 2015, 35(1): 3–11.
[34] van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151–164.
[35] Crawford TN, Alfaro III DV, Kerrison JB, et al. Diabetic retinopathy and angiogenesis[J]. Curr Diabetes Rev, 2009, 5(1): 8–13.