[1] Vahid S, Thaper D, Zoubeidi A. Chaperoning the cancer: the proteostatic functions of the heat shock proteins in cancer[J]. Recent Pat Anticancer Drug Discov, 2017, 12(1): 35–47.
[2] Katsogiannou M, Andrieu C, Rocchi P. Heat shock protein 27 phosphorylation state is associated with cancer progression[J]. Front Genet, 2014, 5: 346.
[3] Mo XM, Li L, Zhu P, et al. Up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis in human papillary thyroid cancer cells[J]. Mol Cell Endocrinol, 2016, 431: 71–87.
[4] Hayashi N, Peacock JW, Beraldi E, et al. Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch[J]. Cell Death Differ, 2012, 19(6): 990–1002.
[5] Ge HZ, Du J, Xu JM, et al. SUMOylation of HSP27 by small ubiquitin-like modifier 2/3 promotes proliferation and invasion of hepatocellular carcinoma cells[J]. Cancer Biol Ther, 2017, 18(8): 552–559.
[6] Zhao M, Shen F, Yin YX, et al. Increased expression of heat shock protein 27 correlates with peritoneal metastasis in epithelial ovarian cancer[J]. Reprod Sci, 2012, 19(7): 748–753.
[7] Yu ZJ, Zhi JL, Peng XF, et al. Clinical significance of HSP27 expression in colorectal cancer[J]. Mol Med Rep, 2010, 3(6): 953–958.
[8] Huang QJ, Ye JX, Huang QL, et al. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma[J]. Clin Chem Lab Med, 2010, 48(2): 263–269.
[9] Heinrich JC, Donakonda S, Haupt VJ, et al. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells[J]. Oncotarget, 2016, 7(42): 68156–68169.
[10] Musiani D, Konda JD, Pavan S, et al. Heat-shock protein 27 (HSP27, HSPB1) is up-regulated by MET kinase inhibitors and confers resistance to MET-targeted therapy[J]. FASEB J, 2014, 28(9): 4055–4067.
[11] Straume O, Shimamura T, Lampa MJG, et al. Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer[J]. Proc Natl Acad Sci USA, 2012, 109(22): 8699–8704.
[12] Motawi TK, Ahmed SA, A Hamed M, et al. Melatonin and/or rowatinex attenuate streptozotocin-induced diabetic renal injury in rats[J]. J Biomed Res, 2019, 33(2): 113–121.
[13] Yoo YM, Jang SK, Kim GH, et al. Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes[J]. J Biomed Res, 2016, 30(4): 314–321.
[14] Lin SH, Huang YN, Kao JH, et al. Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression[J]. Life Sci, 2016, 152: 38–43.
[15] Parent MÉ, El-Zein M, Rousseau MC, et al. Night work and the risk of cancer among men[J]. Am J Epidemiol, 2012, 176(9): 751–759.
[16] Asghari MH, Moloudizargari M, Ghobadi E, et al. Melatonin as a multifunctional anti-cancer molecule: implications in gastric cancer[J]. Life Sci, 2017, 185: 38–45.
[17] Li WM, Fan MD, Chen YN, et al. Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-kappa B: a novel therapeutic implication for gastric cancer[J]. Cell Physiol Biochem, 2015, 37(6): 2323–2338.
[18] Turbov JM, Twaddle GM, Yang XH, et al. Effects of receptor tyrosine kinase inhibitor A47 on estrogen and growth factor-dependent breast cancer cell proliferation and apoptosis in vitro[J]. J Surg Oncol, 2002, 79(1): 17–29.
[19] Liu R, Wang HL, Deng MJ, et al. Melatonin inhibits reactive oxygen species-driven proliferation, epithelial-mesenchymal transition, and vasculogenic mimicry in oral cancer[J]. Oxid Med Cell Longev, 2018, 2018: 3510970.
[20] Zamfir Chiru AA, Popescu CR, Gheorghe DC. Melatonin and cancer[J]. J Med Life, 2014, 7(3): 373–374.
[21] Piazuelo MB, Correa P. Gastric cáncer: overview[J]. Colomb Med, 2013, 44(3): 192–201.
[22] Xin ZL, Jiang S, Jiang P, et al. Melatonin as a treatment for gastrointestinal cancer: a review[J]. J Pineal Res, 2015, 58(4): 375–387.
[23] Leja-Szpak A, Jaworek J, Pierzchalski P, et al. Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1)[J]. J Pineal Res, 2010, 49(3): 248–255.
[24] Deng WJ, Zhang YJ, Gu L, et al. Heat shock protein 27 downstream of P38-PI3K/Akt signaling antagonizes melatonin-induced apoptosis of SGC-7901 gastric cancer cells[J]. Cancer Cell Int, 2016, 16: 5.
[25] Zoubeidi A, Gleave M. Small heat shock proteins in cancer therapy and prognosis[J]. Int J Biochem Cell Biol, 2012, 44(10): 1646–1656.
[26] Chen HF, Liu SJ, Chen G. Heat shock protein 27 phosphorylation in the proliferation and apoptosis of human umbilical vein endothelial cells induced by high glucose through the phosphoinositide 3-kinase/Akt and extracellular signal-regulated kinase 1/2 pathways[J]. Mol Med Rep, 2015, 11(2): 1504–1508.
[27] Zheng CL, Lin ZY, Zhao ZJ, et al. MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27[J]. J Biol Chem, 2006, 281(48): 37215–37226.
[28] Zhang Z, Rui W, Wang ZC, et al. Anti-proliferation and anti-metastasis effect of barbaloin in non-small cell lung cancer via inactivating p38MAPK/Cdc25B/Hsp27 pathway[J]. Oncol Rep, 2017, 38(2): 1172–1180.
[29] Liu YY, Qian J, Li X, et al. Long noncoding RNA BX357664 regulates cell proliferation and epithelial-to-mesenchymal transition via inhibition of TGF-β1/p38/HSP27 signaling in renal cell carcinoma[J]. Oncotarget, 2016, 7(49): 81410–81422.
[30] Du J, Zhang L, Yang Y, et al. ATP depletion-induced actin rearrangement reduces cell adhesion via p38 MAPK-HSP27 signaling in renal proximal tubule cells[J]. Cell Physiol Biochem, 2010, 25(4−5): 501–510.