[1] Forbes JM, Cooper ME. Mechanisms of diabetic complications[J]. Physiol Rev, 2013, 93(1): 137–188.
[2] Eckel RH, Wassef M, Chait A, et al. Prevention conference VI: diabetes and cardiovascular disease: writing group II: pathogenesis of atherosclerosis in diabetes[J]. Circulation, 2002, 105(18): e138–e143.
[3] Fiedler N, Kipen H, Ohman-Strickland P, et al. Sensory and cognitive effects of acute exposure to hydrogen sulfide[J]. Environ Health Perspect, 2008, 116(1): 78–85.
[4] He JT, Li HQ, Yang L, et al. Role of hydrogen sulfide in cognitive deficits: evidences and mechanisms[J]. Eur J Pharmacol, 2019, 849: 146–153.
[5] Qin M, Long F, Wu WJ, et al. Hydrogen sulfide protects against DSS-induced colitis by inhibiting NLRP3 inflammasome[J]. Free Radic Biol Med, 2019, 137: 99–109.
[6] Suzuki K, Olah G, Modis K, et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function[J]. Proc Natl Acad Sci USA, 2011, 108(33): 13829–13834.
[7] Zhou X, An GY, Lu X. Hydrogen sulfide attenuates the development of diabetic cardiomyopathy[J]. Clin Sci (Lond), 2015, 128(5): 325–335.
[8] Peake BF, Nicholson CK, Lambert JP, et al. Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner[J]. Am J Physiol Heart Circ Physiol, 2013, 304(9): H1215–H1224.
[9] Luo TY, Yang YH, Xu YC, et al. Dietary methionine restriction improves glucose metabolism in the skeletal muscle of obese mice[J]. Food Funct, 2019, 10(5): 2676–2690.
[10] Xie LP, Gu Y, Wen ML, et al. Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation[J]. Diabetes, 2016, 65(10): 3171–3184.
[11] Ferro A, Queen LR, Priest RM, et al. Activation of nitric oxide synthase by β2-adrenoceptors in human umbilical vein endothelium in vitro[J]. Br J Pharmacol, 1999, 126(8): 1872–1880.
[12] Silverberg JI. Comorbidities and the impact of atopic dermatitis[J]. Ann Allergy, Asthma Immunol, 2019, .
[13] Kong YL, Tong Y, Chen C, et al. Alleviation of high-fat diet-induced atherosclerosis and glucose intolerance by a novel GLP-1 fusion protein in ApoE−/− mice[J]. Endocrine, 2016, 53(1): 71–80.
[14] Mani S, Li HZ, Untereiner A, et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis[J]. Circulation, 2013, 127(25): 2523–2534.
[15] Wang XH, Wang F, You SJ, et al. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage[J]. Cell Signal, 2013, 25(11): 2255–2262.
[16] Wang YF, Zhao X, Jin HF, et al. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice[J]. Arterioscler Thromb Vasc Biol, 2009, 29(2): 173–179.
[17] Barajas B, Che N, Yin F, et al. NF-E2-related factor 2 promotes atherosclerosis by effects on plasma lipoproteins and cholesterol transport that overshadow antioxidant protection[J]. Arterioscler Thromb Vasc Biol, 2011, 31(1): 58–66.
[18] Holland R, Fishbein JC. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1[J]. Antioxid Redox Signal, 2010, 13(11): 1749–1761.
[19] Manna P, Jain SK. L-cysteine and hydrogen sulfide increase PIP3 and AMPK/PPARγ expression and decrease ROS and vascular inflammation markers in high glucose treated human U937 monocytes[J]. J Cell Biochem, 2013, 114(10): 2334–2345.
[20] Wu DD, Zhong PY, Wang J, et al. Exogenous hydrogen sulfide mitigates LPS + ATP-induced inflammation by inhibiting NLRP3 inflammasome activation and promoting autophagy in L02 cells[J]. Mol Cell Biochem, 2019, 457(1–2): 145–156.
[21] Meng GL, Wang J, Xiao YJ, et al. GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats[J]. J Biomed Res, 2015, 29(3): 203–213.
[22] Xiao L, Liu YH, Wang NP. New paradigms in inflammatory signaling in vascular endothelial cells[J]. Am J Physiol Heart Circ Physiol, 2014, 306(3): H317–H325.
[23] Venkatesan B, Valente AJ, Das NA, et al. CIKS (Act1 or TRAF3IP2) mediates high glucose-induced endothelial dysfunction[J]. Cell Signal, 2013, 25(1): 359–371.
[24] Bełtowski J. Hydrogen sulfide in pharmacology and medicine-an update[J]. Pharmacol Rep, 2015, 67(3): 647–658.
[25] Voloshchuk N, Melnik A, Danchenko O, et al. The state of the cystathionine gamma-lyase/H2S system in the liver and skeletal muscles of rats with hypercholesterolemia under simvastatin administration[J]. Georgian Med News, 2018, 6(279): 150–155.
[26] Magierowski M, Magierowska K, Surmiak M, et al. The effect of hydrogen sulfide-releasing naproxen (ATB-346) versus naproxen on formation of stress-induced gastric lesions, the regulation of systemic inflammation, hypoxia and alterations in gastric microcirculation[J]. J Physiol Pharmacol, 2017, 68(5): 749–756.
[27] Sun LH, Wu YL, Chen JJ, et al. A turn-on optoacoustic probe for imaging metformin-induced upregulation of hepatic hydrogen sulfide and subsequent liver injury[J]. Theranostics, 2019, 9(1): 77–89.