[1] Torre LA, Islami F, Siegel RL, et al. Global cancer in women: burden and trends[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(4): 444–457.
[2] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359–E386.
[3] zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application[J]. Nat Rev Cancer, 2002, 2(5): 342–350.
[4] Dalstein V, Riethmuller D, Prétet JL, et al. Persistence and load of high-risk HPV are predictors for development of high-grade cervical lesions: a longitudinal French cohort study[J]. Int J Cancer, 2003, 106(3): 396–403.
[5] Kulasingam SL, Hughes JP, Kiviat NB, et al. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral[J]. JAMA, 2002, 288(14): 1749–1757.
[6] de Freitas AC, Gurgel APAD, Chagas BS, et al. Susceptibility to cervical cancer: an overview[J]. Gynecol Oncol, 2012, 126(2): 304–311.
[7] Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives[J]. Nat Rev Cancer, 2017, 17(11): 692–704.
[8] Pennisi E. Disease risk links to gene regulation[J]. Science, 2011, 332(6033): 1031.
[9] Kumar V, Wijmenga C, Withoff S. From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases[J]. Semin Immunopathol, 2012, 34(4): 567–580.
[10] Chen D, Juko-Pecirep I, Hammer J, et al. Genome-wide association study of susceptibility loci for cervical cancer[J]. J Natl Cancer Inst, 2013, 105(9): 624–633.
[11] Shi YY, Li L, Hu ZB, et al. A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12[J]. Nat Genet, 2013, 45(8): 918–922.
[12] Miura K, Mishima H, Kinoshita A, et al. Genome-wide association study of HPV-associated cervical cancer in Japanese women[J]. J Med Virol, 2014, 86(7): 1153–1158.
[13] Chen D, Gyllensten U. Lessons and implications from association studies and post-GWAS analyses of cervical cancer[J]. Trends Genet, 2015, 31(1): 41–54.
[14] Chen D, Enroth S, Ivansson E, et al. Pathway analysis of cervical cancer genome-wide association study highlights the MHC region and pathways involved in response to infection[J]. Hum Mol Genet, 2014, 23(22): 6047–6060.
[15] Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses[J]. Genes Dev, 2011, 25(18): 1915–1927.
[16] Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers[J]. Cancer Biol Med, 2015, 12(1): 1–9.
[17] Sharma S, Mandal P, Sadhukhan T, et al. Bridging links between long noncoding RNA HOTAIR and HPV oncoprotein E7 in cervical cancer pathogenesis[J]. Sci Rep, 2015, 5: 11724.
[18] Sharma Saha S, Roy Chowdhury R, Mondal NR, et al. Identification of genetic variation in the lncRNA HOTAIR associated with HPV16-related cervical cancer pathogenesis[J]. Cell Oncol (Dordr), 2016, 39(6): 559–572.
[19] Gutschner T, Hämmerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer[J]. J Mol Med (Berl), 2013, 91(7): 791–801.
[20] Jiang Y, Li YH, Fang SJ, et al. The role of MALAT1 correlates with HPV in cervical cancer[J]. Oncol Lett, 2014, 7(6): 2135–2141.
[21] Peng L, Yuan XQ, Jiang BY, et al. LncRNAs: key players and novel insights into cervical cancer[J]. Tumour Biol, 2016, 37(3): 2779–2788.
[22] Pan WT, Liu LS, Wei JY, et al. A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility[J]. Mol Carcinog, 2016, 55(1): 90–96.
[23] Yan R, Cao JJ, Song CH, et al. Polymorphisms in lncRNA HOTAIR and susceptibility to breast cancer in a Chinese population[J]. Cancer Epidemiol, 2015, 39(6): 978–985.
[24] Qiu HF, Wang XJ, Guo RX, et al. HOTAIR rs920778 polymorphism is associated with ovarian cancer susceptibility and poor prognosis in a Chinese population[J]. Future Oncol, 2017, 13(4): 347–355.
[25] Han J, Zhou W, Jia MQ, et al. Expression quantitative trait loci in long non-coding RNA PAX8-AS1 are associated with decreased risk of cervical cancer[J]. Mol Genet Genomics, 2016, 291(4): 1743–1748.
[26] Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB[J]. Genome Res, 2012, 22(9): 1790–1797.
[27] Lettre G, Lange C, Hirschhorn JN. Genetic model testing and statistical power in population-based association studies of quantitative traits[J]. Genet Epidemiol, 2007, 31(4): 358–362.
[28] Zhang ZX, Tong X, Zhang WN, et al. Association between the HOTAIR polymorphisms and cancer risk: an updated meta-analysis[J]. Oncotarget, 2017, 8(3): 4460–4470.
[29] Guo LS, Lu XG, Zheng LJ, et al. Association of long non-coding RNA HOTAIR polymorphisms with cervical cancer risk in a chinese population[J]. PLoS One, 2016, 11(7): e0160039.
[30] Jin H, Lu XY, Ni J, et al. HOTAIR rs7958904 polymorphism is associated with increased cervical cancer risk in a Chinese population[J]. Sci Rep, 2017, 7(1): 3144.
[31] Li YJ, Bao CZ, Gu SM, et al. Associations between novel genetic variants in the promoter region of MALAT1 and risk of colorectal cancer[J]. Oncotarget, 2017, 8(54): 92604–92614.
[32] Wang BG, Xu Q, Lv Z, et al. Association of twelve polymorphisms in three onco-lncRNA genes with hepatocellular cancer risk and prognosis: a case-control study[J]. World J Gastroenterol, 2018, 24(23): 2482–2490.
[33] Peng R, Luo CL, Guo QY, et al. Association analyses of genetic variants in long non-coding RNA MALAT1 with breast cancer susceptibility and mRNA expression of MALAT1 in Chinese Han population[J]. Gene, 2018, 642: 241–248.
[34] Chen SQ, Zhang HM, Li JB, et al. Analyzing simultaneous positive expression of EZH2 and P53 protein to improve predictive value in cervical squamous cell carcinoma[J]. Int J Gynecol Cancer, 2014, 24(9): 1653–1658.
[35] Azizmohammadi S, Azizmohammadi S, Safari A, et al. High-level expression of RIPK4 and EZH2 contributes to lymph node metastasis and predicts favorable prognosis in patients with cervical cancer[J]. Oncol Res, 2017, 25(4): 495–501.
[36] Jin MF, Yang ZJ, Ye WP, et al. Prognostic significance of histone methyltransferase enhancer of zeste homolog 2 in patients with cervical squamous cell carcinoma[J]. Oncol Lett, 2015, 10(2): 857–862.
[37] Yang L, Bai HS, Deng Y, et al. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion[J]. Eur Rev Med Pharmacol Sci, 2015, 19(17): 3187–3193.
[38] Guo FJ, Li YL, Liu Y, et al. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion[J]. Acta Biochim Biophys Sin (Shanghai), 2010, 42(3): 224–229.