[1] Palmiter RD, Brinster RL. Transgenic mice[J]. Cell, 1985, 41(2): 343–345. doi:  10.1016/s0092-8674(85)80004-0
[2] Saunders TL. The history of transgenesis[M]//Larson MA. Transgenic Mouse: Transgenic Mouse. New York: Humana, 2020: 1–26, doi: 10.1007/978-1-4939-9837-1_1.
[3] Brinster RL, Braun RE, Lo D, et al. Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs[J]. Proc Natl Acad Sci U S A, 1989, 86(18): 7087–7091. doi:  10.1073/pnas.86.18.7087
[4] Cain-Hom C, Splinter E, van Min M, et al. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification[J]. Nucleic Acids Res, 2017, 45(8): e62. doi:  10.1093/nar/gkw1329
[5] Chiang C, Jacobsen JC, Ernst C, et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration[J]. Nat Genet, 2012, 44(4): 390–397. doi:  10.1038/ng.2202
[6] Dubose AJ, Lichtenstein ST, Narisu N, et al. Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene[J]. Nucleic Acids Res, 2013, 41(6): e70. doi:  10.1093/nar/gks1463
[7] Goodwin LO, Splinter E, Davis TL, et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis[J]. Genome Res, 2019, 29(3): 494–505. doi:  10.1101/gr.233866.117
[8] Meisler MH. Insertional mutation of 'classical' and novel genes in transgenic mice[J]. Trends Genet, 1992, 8(10): 341–344. doi:  10.1016/0168-9525(92)90278-C
[9] Clark AJ, Bissinger P, Bullock DW, et al. Chromosomal position effects and the modulation of transgene expression[J]. Reprod Fertil Dev, 1994, 6(5): 589–598. doi:  10.1071/RD9940589
[10] Gödecke N, Zha LS, Spencer S, et al. Controlled re-activation of epigenetically silenced Tet promoter-driven transgene expression by targeted demethylation[J]. Nucleic Acids Res, 2017, 45(16): e147. doi:  10.1093/nar/gkx601
[11] Lin TP. Microinjection of mouse eggs[J]. Science, 1966, 151(3708): 333–337. doi:  10.1126/science.151.3708.333
[12] Wilson IB, Bolton E, Cuttler RH. Preimplantation differentiation in the mouse egg as revealed by microinjection of vital markers[J]. J Embryol Exp Morphol, 1972, 27(2): 467–469. https://dev.biologists.org/content/27/2/467.long
[13] Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proc Natl Acad Sci U S A, 1980, 77(12): 7380–7384. doi:  10.1073/pnas.77.12.7380
[14] Ohtsuka M, Ogiwara S, Miura H, et al. Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression[J]. Nucleic Acids Res, 2010, 38(22): e198. doi:  10.1093/nar/gkq860
[15] Ohtsuka M, Miura H, Mochida K, et al. One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT)[J]. BMC Genomics, 2015, 16(1): 274. doi:  10.1186/s12864-015-1432-5
[16] Tasic B, Hippenmeyer S, Wang C, et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection[J]. Proc Natl Acad Sci U S A, 2011, 108(19): 7902–7907. doi:  10.1073/pnas.1019507108
[17] Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century[J]. Nat Rev Genet, 2005, 6(6): 507–512. doi:  10.1038/nrg1619
[18] Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1[J]. Proc Natl Acad Sci U S A, 1988, 85(14): 5166–5170. doi:  10.1073/pnas.85.14.5166
[19] Skarnes WC, Rosen B, West AP, et al. A conditional knockout resource for the genome-wide study of mouse gene function[J]. Nature, 2011, 474(7351): 337–342. doi:  10.1038/nature10163
[20] White JK, Gerdin AK, Karp NA, et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes[J]. Cell, 2013, 154(2): 452–464. doi:  10.1016/j.cell.2013.06.022
[21] Meier ID, Bernreuther C, Tilling T, et al. Short DNA sequences inserted for gene targeting can accidentally interfere with off-target gene expression[J]. FASEB J, 2010, 24(6): 1714–1724. doi:  10.1096/fj.09-140749
[22] Bult CJ, Blake JA, Smith CL, et al. Mouse Genome Database (MGD) 2019[J]. Nucleic Acids Res, 2019, 47(D1): D801–D806. doi:  10.1093/nar/gky1056
[23] Gurumurthy CB, Joshi PS, Kurz SG, et al. Validation of simple sequence length polymorphism regions of commonly used mouse strains for marker assisted speed congenics screening[J]. Int J Genomics, 2015, 2015: 735845. doi:  10.1155/2015/735845
[24] Song AJ, Palmiter RD. Detecting and avoiding problems when using the Cre–lox system[J]. Trends Genet, 2018, 34(5): 333–340. doi:  10.1016/j.tig.2017.12.008
[25] Madisen L, Zwingman TA, Sunkin SM, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain[J]. Nat Neurosci, 2010, 13(1): 133–140. doi:  10.1038/nn.2467
[26] Fernández-Chacón M, Casquero-García V, Luo W, et al. iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications[J]. Nat Commun, 2019, 10(1): 2262. doi:  10.1038/s41467-019-10239-4
[27] Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain[J]. Nat Genet, 1999, 21(1): 70–71. doi:  10.1038/5007
[28] Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector[J]. Gene, 1991, 108(2): 193–199. doi:  10.1016/0378-1119(91)90434-d
[29] Sakai N. Principles for the use of in vivo transgene techniques: overview and an introductory practical guide for the selection of tetracycline-controlled transgenic mice[M]//Shiozawa S. Arthritis Research: Methods and Protocols. New York: Humana Press, 2014: 33–40, doi: 10.1007/978-1-4939-0404-4_4.
[30] Chen XY, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality[J]. Adv Drug Deliv Rev, 2013, 65(10): 1357–1369. doi:  10.1016/j.addr.2012.09.039
[31] Ryan MD, King AMQ, Thomas GP. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence[J]. J Gen Virol, 1991, 72(11): 2727–2732. doi:  10.1099/0022-1317-72-11-2727
[32] Kim JH, Lee SR, Li LH, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice[J]. PLoS One, 2011, 6(4): e18556. doi:  10.1371/journal.pone.0018556
[33] Hosur V, Low BE, Li D, et al. Genes adapt to outsmart gene-targeting strategies in mutant mouse strains by skipping exons to reinitiate transcription and translation[J]. Genome Biol, 2020, 21(1): 168. doi:  10.1186/s13059-020-02086-0
[34] El-Brolosy MA, Kontarakis Z, Rossi A, et al. Genetic compensation triggered by mutant mRNA degradation[J]. Nature, 2019, 568(7751): 193–197. doi:  10.1038/s41586-019-1064-z
[35] Bendriem RM, Singh S, Aleem AA, et al. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex[J]. eLife, 2019, 8: e49376. doi:  10.7554/eLife.49376
[36] Popp MW, Maquat LE. Leveraging rules of nonsense-mediated Mrna decay for genome engineering and personalized medicine[J]. Cell, 2016, 165(6): 1319–1322. doi:  10.1016/j.cell.2016.05.053
[37] Lyu Q, Dhagia V, Han Y, et al. CRISPR-Cas9-mediated epitope tagging provides accurate and versatile assessment of myocardin-brief report[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2184–2190. doi:  10.1161/ATVBAHA.118.311171
[38] Choi M, Lu YW, Zhao JJ, et al. Transcriptional control of a novel long noncoding RNA Mymsl in smooth muscle cells by a single Cis-element and its initial functional characterization in vessels[J]. J Mol Cell Cardiol, 2020, 138: 147–157. doi:  10.1016/j.yjmcc.2019.11.148
[39] Miano JM, Long XC. The short and long of noncoding sequences in the control of vascular cell phenotypes[J]. Cell Mol Life Sci, 2015, 72(18): 3457–3488. doi:  10.1007/s00018-015-1936-9
[40] Miano JM, Long XC, Lyu Q. CRISPR links to long noncoding RNA function in mice: a practical approach[J]. Vascul Pharmacol, 2019, 114: 1–12. doi:  10.1016/j.vph.2019.02.004
[41] Isakova A, Fehlmann T, Keller A, et al. A mouse tissue atlas of small noncoding RNA[J]. Proc Natl Acad Sci U S A, 2020, 117(41): 25634–25645. doi:  10.1073/pnas.2002277117
[42] Ratnere I, Dubchak I. Obtaining comparative genomic data with the VISTA family of computational tools[J]. Curr Protoc Bioinformatics, 2009, 26(1): 10.6.1–10.6.17. doi:  10.1002/0471250953.bi1006s26
[43] Economides AN, Frendewey D, Yang P, et al. Conditionals by inversion provide a universal method for the generation of conditional alleles[J]. Proc Natl Acad Sci U S A, 2013, 110(34): E3179–E3188. doi:  10.1073/pnas.1217812110
[44] Guzzardo PM, Rashkova C, Dos Santos RL, et al. A small cassette enables conditional gene inactivation by CRISPR/Cas9[J]. Sci Rep, 2017, 7(1): 16770. doi:  10.1038/s41598-017-16931-z
[45] Xie F, Zhou XY, Lin TT, et al. Production of gene-edited pigs harboring orthologous human mutations via double cutting by CRISPR/Cas9 with long single-stranded DNAs as homology-directed repair templates by zygote injection[J]. Transgenic Res, 2020, 29(5-6): 587–598. doi:  10.1007/s11248-020-00218-7
[46] Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000[J]. Nucleic Acids Res, 2000, 28(1): 292. doi:  10.1093/nar/28.1.292
[47] Quadros RM, Miura H, Harms DW, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins[J]. Genome Biol, 2017, 18(1): 92. doi:  10.1186/s13059-017-1220-4
[48] Miura H, Quadros RM, Gurumurthy CB, et al. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors[J]. Nat Protoc, 2018, 13(1): 195–215. doi:  10.1038/nprot.2017.153
[49] Chu VT, Weber T, Graf R, et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes[J]. BMC Biotechnol, 2016, 16: 4. doi:  10.1186/s12896-016-0234-4
[50] Gu B, Posfai E, Rossant J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos[J]. Nat Biotechnol, 2018, 36(7): 632–637. doi:  10.1038/nbt.4166
[51] Abe T, Inoue KI, Furuta Y, et al. Pronuclear microinjection during s-phase increases the efficiency of CRISPR-Cas9-assisted knockin of large DNA donors in mouse zygotes[J]. Cell Rep, 2020, 31(7): 107653. doi:  10.1016/j.celrep.2020.107653
[52] Yoshimi K, Oka Y, Miyasaka Y, et al. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats[J]. Hum Genet, 2021, 140(2): 277–287. doi:  10.1007/s00439-020-02198-4
[53] Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing[J]. Sci Rep, 2015, 5: 11315. doi:  10.1038/srep11315
[54] Qin WN, Dion SL, Kutny PM, et al. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease[J]. Genetics, 2015, 200(2): 423–430. doi:  10.1534/genetics.115.176594
[55] Wang WB, Kutny PM, Byers SL, et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation[J]. J Genet Genomics, 2016, 43(5): 319–327. doi:  10.1016/j.jgg.2016.02.004
[56] Chen SA, Lee B, Lee AYF, et al. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes[J]. J Biol Chem, 2016, 291(28): 14457–14467. doi:  10.1074/jbc.M116.733154
[57] Tröder SE, Ebert LK, Butt L, et al. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes[J]. PLoS One, 2018, 13(5): e0196891. doi:  10.1371/journal.pone.0196891
[58] Takahashi G, Gurumurthy CB, Wada K, et al. GONAD: genome-editing via Oviductal nucleic acids delivery system: a novel microinjection independent genome engineering method in mice[J]. Sci Rep, 2015, 5: 11406. doi:  10.1038/srep11406
[59] Gurumurthy CB, Takahashi G, Wada K, et al. GONAD: a novel CRISPR/Cas9 genome editing method that does not require ex vivo handling of embryos[J]. Curr Protoc Hum Genet, 2016, 88(1): 15.8.1–15.8.12. doi:  10.1002/0471142905.hg1508s88
[60] Ohtsuka M, Sato M, Miura H, et al. i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases[J]. Genome Biol, 2018, 19(1): 25. doi:  10.1186/s13059-018-1400-x
[61] Gurumurthy CB, Sato M, Nakamura A, et al. Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD[J]. Nat Protoc, 2019, 14(8): 2452–2482. doi:  10.1038/s41596-019-0187-x
[62] Shen B, Zhang J, Wu HY, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Res, 2013, 23(5): 720–723. doi:  10.1038/cr.2013.46
[63] Yen ST, Zhang M, Deng JM, et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes[J]. Dev Biol, 2014, 393(1): 3–9. doi:  10.1016/j.ydbio.2014.06.017
[64] Wu Y, Zhang J, Peng BY, et al. Generating viable mice with heritable embryonically lethal mutations using the CRISPR-Cas9 system in two-cell embryos[J]. Nat Commun, 2019, 10(1): 2883. doi:  10.1038/s41467-019-10748-2
[65] Quadros RM, Harms DW, Ohtsuka M, et al. Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system[J]. FEBS Open Bio, 2015, 5(1): 191–197. doi:  10.1016/j.fob.2015.03.003
[66] Mianné J, Codner GF, Caulder A, et al. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control[J]. Methods, 2017, 121-122: 68–76. doi:  10.1016/j.ymeth.2017.03.016
[67] Parker-Thornburg J. Breeding strategies for genetically modified mice[M]//Larson MA. Transgenic Mouse: Methods and Protocols. New York: Humana, 2020: 163–169, doi: 10.1007/978-1-4939-9837-1_14.
[68] Boroviak K, Fu BY, Yang FT, et al. Revealing hidden complexities of genomic rearrangements generated with Cas9[J]. Sci Rep, 2017, 7(1): 12867. doi:  10.1038/s41598-017-12740-6
[69] Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements[J]. Nat Biotechnol, 2018, 36(8): 765–771. doi:  10.1038/nbt.4192
[70] Iyer V, Shen B, Zhang WS, et al. Off-target mutations are rare in Cas9-modified mice[J]. Nat Methods, 2015, 12(6): 479. doi:  10.1038/nmeth.3408
[71] Anderson KR, Haeussler M, Watanabe C, et al. CRISPR off-target analysis in genetically engineered rats and mice[J]. Nat Methods, 2018, 15(7): 512–514. doi:  10.1038/s41592-018-0011-5
[72] Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nat Biotechnol, 2016, 34(2): 184–191. doi:  10.1038/nbt.3437
[73] Vakulskas CA, Dever DP, Rettig GR, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells[J]. Nat Med, 2018, 24(8): 1216–1224. doi:  10.1038/s41591-018-0137-0
[74] McBeath E, Parker-Thornburg J, Fujii Y, et al. Rapid evaluation of CRISPR guides and donors for engineering mice[J]. Genes, 2020, 11(6): 628. doi:  10.3390/genes11060628
[75] Muzumdar MD, Tasic B, Miyamichi K, et al. A global double-fluorescent Cre reporter mouse[J]. Genes, 2007, 45(9): 593–605. doi:  10.1002/dvg.20335
[76] Madisen L, Garner AR, Shimaoka D, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance[J]. Neuron, 2015, 85(5): 942–958. doi:  10.1016/j.neuron.2015.02.022
[77] Daigle TL, Madisen L, Hage TA, et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality[J]. Cell, 2018, 174(2): 465–480. doi:  10.1016/j.cell.2018.06.035
[78] Gurumurthy CB, Quadros RM, Richardson GP, et al. Genetically modified mouse models to help fight COVID-19[J]. Nat Protoc, 2020, 15(12): 3777–3787. doi:  10.1038/s41596-020-00403-2
[79] Müller U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis[J]. Mech Dev, 1999, 82(1-2): 3–21. doi:  10.1016/s0925-4773(99)00021-0
[80] Palmiter RD, Brinster RL. Germ-line transformation of mice[J]. Annu Rev Genet, 1986, 20: 465–499. doi:  10.1146/annurev.ge.20.120186.002341
[81] Xu WH. Microinjection and micromanipulation: a historical perspective[M]//Liu CY, Du YB. Microinjection: Methods and Protocols. New York: Humana Press, 2019: 1–16, doi: 10.1007/978-1-4939-8831-0_1.
[82] Anastassiadis K, Glaser S, Kranz A, et al. A practical summary of site-specific recombination, conditional mutagenesis, and tamoxifen induction of CreERT2[J]. Methods Enzymol, 2010, 477: 109–123. doi:  10.1016/S0076-6879(10)77007-5
[83] Nagy A. Cre recombinase: the universal reagent for genome tailoring[J]. Genesis, 2000, 26(2): 99–109. doi:  10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B
[84] Gurumurthy CB, Lloyd KCK. Generating mouse models for biomedical research: technological advances[J]. Dis Model Mech, 2019, 12(1): dmm029462. doi:  10.1242/dmm.029462
[85] Miano JM, Zhu QM, Lowenstein CJ. A CRISPR path to engineering new genetic mouse models for cardiovascular research[J]. Arterioscler Thromb Vasc Biol, 2016, 36(6): 1058–1075. doi:  10.1161/ATVBAHA.116.304790
[86] Doetschman T, Gregg RG, Maeda N, et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells[J]. Nature, 1987, 330(6148): 576–578. doi:  10.1038/330576a0
[87] Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J]. Cell, 1987, 51(3): 503–512. doi:  10.1016/0092-8674(87)90646-5