[1] Vance JE. Phospholipid synthesis and transport in mammalian cells[J]. Traffic, 2015, 16(1): 1–18.
[2] Kennedy EP, Weiss SB. The function of cytidine coenzymes in the biosynthesis of phospholipides[J]. J Biol Chem, 1956, 222(1): 193–214.
[3] Schenkel LC, Bakovic M. Formation and regulation of mitochondrial membranes[J]. Int J Cell Biol, 2014, 2014: 709828.
[4] Fullerton MD, Hakimuddin F, Bonen A, et al. The development of a metabolic disease phenotype in CTP: phosphoethanolamine cytidylyltransferase-deficient mice[J]. J Biol Chem, 2009, 284(38): 25704–25713.
[5] Aoyama C, Liao HA, Ishidate K. Structure and function of choline kinase isoforms in mammalian cells[J]. Prog Lipid Res, 2004, 43(3): 266–281.
[6] Lykidis A, Wang JA, Karim MA, et al. Overexpression of a mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine pathway[J]. J Biol Chem, 2001, 276(3): 2174–2179.
[7] Henneberry AL, McMaster CR. Cloning and expression of a human choline/ethanolaminephosphotransferase: synthesis of phosphatidylcholine and phosphatidylethanolamine[J]. Biochem J, 1999, 339(2): 291–298.
[8] Devaux PF. Static and dynamic lipid asymmetry in cell membranes[J]. Biochemistry, 1991, 30(5): 1163–1173.
[9] Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders[J]. Nat Rev Endocrinol, 2017, 13(2): 79–91.
[10] Li ZY, Agellon LB, Allen TM, et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis[J]. Cell Metab, 2006, 3(5): 321–331.
[11] Saha S, Anilkumar AA, Mayor S. GPI-anchored protein organization and dynamics at the cell surface[J]. J Lipid Res, 2016, 57(2): 159–175.
[12] Górski J, Żendzian-Piotrowska M, de Jong YF, et al. Effect of endurance training on the phospholipid content of skeletal muscles in the rat[J]. Eur J Appl Physiol Occup Physiol, 1999, 79(5): 421–425.
[13] Pilch PF, Thompson PA, Czech MP. Coordinate modulation of D-glucose transport activity and bilayer fluidity in plasma membranes derived from control and insulin-treated adipocytes[J]. Proc Natl Acad Sci USA, 1980, 77(2): 915–918.
[14] Funai K, Lodhi IJ, Spears LD, et al. Skeletal muscle phospholipid metabolism regulates insulin sensitivity and contractile function[J]. Diabetes, 2016, 65(2): 358–370.
[15] Selathurai A, Kowalski GM, Burch ML, et al. The CDP-ethanolamine pathway regulates skeletal muscle diacylglycerol content and mitochondrial biogenesis without altering insulin sensitivity[J]. Cell Metab, 2015, 21(5): 718–730.
[16] Fullerton MD, Hakimuddin F, Bakovic M. Developmental and metabolic effects of disruption of the mouse CTP: phosphoethanolamine cytidylyltransferase gene (Pcyt2)[J]. Mol Cell Biol, 2007, 27(9): 3327–3336.
[17] Singh RK, Fullerton MD, Vine D, et al. Mechanism of hypertriglyceridemia in CTP: phosphoethanolamine cytidylyltransferase-deficient mice[J]. J Lipid Res, 2012, 53(9): 1811–1822.
[18] Ling J, Chaba T, Zhu LF, et al. Hepatic ratio of phosphatidylcholine to phosphatidylethanolamine predicts survival after partial hepatectomy in mice[J]. Hepatology, 2012, 55(4): 1094–1102.
[19] Fu SE, Yang L, Li P, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity[J]. Nature, 2011, 473(7348): 528–531.
[20] Walkey CJ, Yu LQ, Agellon LB, et al. Biochemical and evolutionary significance of phospholipid methylation[J]. J Biol Chem, 1998, 273(42): 27043–27046.
[21] Martínez-Uña M, Varela-Rey M, Mestre D, et al. S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease[J]. J Hepatol, 2015, 62(3): 673–681.
[22] O’Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity[J]. Mol Cell Endocrinol, 2013, 366(2): 135–151.
[23] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414(6865): 799–806.
[24] Shulman GI. Cellular mechanisms of insulin resistance[J]. J Clin Invest, 2000, 106(2): 171–176.
[25] Steinberg GR. Inflammation in obesity is a common link between defects in fatty acid metabolism and insulin resistance[J]. Cell Cycle, 2007, 6(8): 888–894.
[26] Michel V, Singh RK, Bakovic M. The impact of choline availability on muscle lipid metabolism[J]. Food Funct, 2011, 2(1): 53–62.
[27] Schenkel LC, Sivanesan S, Zhang JZ, et al. Choline supplementation restores substrate balance and alleviates complications of Pcyt2 deficiency[J]. J Nutr Biochem, 2015, 26(11): 1221–1234.
[28] Tijburg LBM, Houweling M, Geelen MJH, et al. Inhibition of phosphatidylethanolamine synthesis by glucagon in isolated rat hepatocytes[J]. Biochem J, 1989, 257(3): 645–650.
[29] Jamil H, Utal AK, Vance DE. Evidence that cyclic AMP-induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes[J]. J Biol Chem, 1992, 267(3): 1752–1760.
[30] Jackowski S, Wang JA, Baburina I. Activity of the phosphatidylcholine biosynthetic pathway modulates the distribution of fatty acids into glycerolipids in proliferating cells[J]. Biochim Biophys Acta, 2000, 1483(3): 301–315.
[31] Leonardi R, Frank MW, Jackson PD, et al. Elimination of the CDP-ethanolamine pathway disrupts hepatic lipid homeostasis[J]. J Biol Chem, 2009, 284(40): 27077–27089.
[32] Fullerton MD, Bakovic M. Complementation of the metabolic defect in CTP: phosphoethanolamine cytidylyltransferase (Pcyt2)-deficient primary hepatocytes[J]. Metabolism, 2010, 59(12): 1691–1700.
[33] Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade[J]. Diabetes, 1999, 48(6): 1270–1274.
[34] Itani SI, Ruderman NB, Schmieder F, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α[J]. Diabetes, 2002, 51(7): 2005–2011.
[35] Bakshi I, Brown SH, Brandon AE, et al. Increasing Acyl CoA thioesterase activity alters phospholipid profile without effect on insulin action in skeletal muscle of rats[J]. Sci Rep, 2018, 8(1): 13967.
[36] Borkman M, Storlien LH, Pan DA, et al. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids[J]. N Engl J Med, 1993, 328(4): 238–244.
[37] Pan DA, Lillioja S, Milner MR, et al. Skeletal muscle membrane lipid composition is related to adiposity and insulin action[J]. J Clin Invest, 1995, 96(6): 2802–2808.
[38] Vessby B, Tengblad S, Lithell H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men[J]. Diabetologia, 1994, 37(10): 1044–1050.
[39] Ginsberg BH, Brown TJ, Simon I, et al. Effect of the membrane lipid environment on the properties of insulin receptors[J]. Diabetes, 1981, 30(9): 773–780.
[40] Nadiv O, Shinitzky M, Manu H, et al. Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats[J]. Biochem J, 1994, 298(2): 443–450.
[41] Paran CW, Verkerke ARP, Heden TD, et al. Reduced efficiency of sarcolipin‐dependent respiration in myocytes from humans with severe obesity[J]. Obesity, 2015, 23(7): 1440–1449.
[42] Newsom SA, Brozinick JT, Kiseljak-Vassiliades K, et al. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans[J]. J Appl Physiol, 2016, 120(11): 1355–1363.
[43] Lee S, Norheim F, Gulseth HL, et al. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine respond to exercise and influence insulin sensitivity in men[J]. Sci Rep, 2018, 8: 6531.
[44] Gustavsson M, Traaseth NJ, Veglia G. Activating and deactivating roles of lipid bilayers on the Ca2+-ATPase/phospholamban complex[J]. Biochemistry, 2011, 50(47): 10367–10374.
[45] Hunter GW, Negash S, Squier TC. Phosphatidylethanolamine modulates Ca-ATPase function and dynamics[J]. Biochemistry, 1999, 38(4): 1356–1364.
[46] Starling AP, Dalton KA, East JM, et al. Effects of phosphatidylethanolamines on the activity of the Ca2+-ATPase of sarcoplasmic reticulum[J]. Biochem J, 1996, 320(1): 309–314.
[47] Li YK, Ge MT, Ciani L, et al. Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium atpase-2b activity in parallel with increased order of membrane lipids[J]. J Biol Chem, 2004, 279(35): 37030–37039.
[48] Cheng KH, Lepock JR, Hui SW, et al. The role of cholesterol in the activity of reconstituted Ca-ATPase vesicles containing unsaturated phosphatidylethanolamine[J]. J Biol Chem, 1986, 261(11): 5081–5087.
[49] Norimatsu Y, Hasegawa K, Shimizu N, et al. Protein-phospholipid interplay revealed with crystals of a calcium pump[J]. Nature, 2017, 545(7653): 193–198.
[50] Fajardo VA, Mikhaeil JS, Leveille CF, et al. Elevated whole muscle phosphatidylcholine: phosphatidylethanolamine ratio coincides with reduced SERCA activity in murine overloaded plantaris muscles[J]. Lipids Health Dis, 2018, 17: 47.
[51] Paran CW, Zou K, Ferrara PJ, et al. Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy[J]. Biochim Biophys Acta, 2015, 1851(12): 1530–1538.
[52] Park SW, Zhou YJ, Lee J, et al. Sarco (endo) plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity[J]. Proc Natl Acad Sci USA, 2010, 107(45): 19320–19325.
[53] Funai K, Song HW, Yin L, et al. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling[J]. J Clin Invest, 2013, 123(3): 1229–1240.
[54] Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis[J]. EMBO Rep, 2001, 2(4): 282–286.
[55] Goonasekera SA, Lam CK, Millay DP, et al. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle[J]. J Clin Invest, 2011, 121(3): 1044–1052.
[56] Zurlo F, Nemeth PM, Choksi RM, et al. Whole-body energy metabolism and skeletal muscle biochemical characteristics[J]. Metabolism, 1994, 43(4): 481–486.
[57] Hancock CR, Han DH, Chen M, et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria[J]. Proc Natl Acad Sci USA, 2008, 105(22): 7815–7820.
[58] Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction[J]. Diabetes, 2006, 55(S2): S9–S15.
[59] Holloszy JO. Biochemical adaptations in muscle. effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle[J]. J Biol Chem, 1967, 242(9): 2278–2282.
[60] Torres MJ, Kew KA, Ryan TE, et al. 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle[J]. Cell Metab, 2018, 27(1): 167–179.
[61] Wenz T, Hielscher R, Hellwig P, et al. Role of phospholipids in respiratory cytochrome bc1 complex catalysis and supercomplex formation[J]. Biochim Biophys Acta, 2009, 1787(6): 609–616.
[62] Shaikh SR, Sullivan EM, Alleman RJ, et al. Increasing mitochondrial membrane phospholipid content lowers the enzymatic activity of electron transport complexes[J]. Biochemistry, 2014, 53(35): 5589–5591.
[63] Becker T, Horvath SE, Böttinger L, et al. Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins[J]. J Biol Chem, 2013, 288(23): 16451–16459.
[64] Gohil VM, Greenberg ML. Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand[J]. J Cell Biol, 2009, 184(4): 469–472.
[65] Mejia EM, Hatch GM. Mitochondrial phospholipids: role in mitochondrial function[J]. J Bioenerg Biomembr, 2016, 48(2): 99–112.
[66] Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes[J]. N Engl J Med, 2004, 350(7): 664–671.
[67] Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes[J]. Diabetes, 2002, 51(10): 2944–2950.
[68] Asmann YW, Stump CS, Short KR, et al. Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia[J]. Diabetes, 2006, 55(12): 3309–3319.
[69] Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes[J]. Nat Genet, 2003, 34(3): 267–273.
[70] Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes[J]. Science, 2005, 307(5708): 384–387.
[71] Shiao YJ, Lupo G, Vance JE. Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine[J]. J Biol Chem, 1995, 270(19): 11190–11198.
[72] Basu Ball W, Neff JK, Gohil VM. The role of nonbilayer phospholipids in mitochondrial structure and function[J]. FEBS Lett, 2018, 592(8): 1273–1290.
[73] Steenbergen R, Nanowski TS, Beigneux A, et al. Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects[J]. J Biol Chem, 2005, 280(48): 40032–40040.
[74] van der Veen JN, Lingrell S, da Silva RP, et al. The concentration of phosphatidylethanolamine in mitochondria can modulate ATP production and glucose metabolism in mice[J]. Diabetes, 2014, 63(8): 2620–2630.
[75] Trotter PJ, Pedretti J, Voelker DR. Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele[J]. J Biol Chem, 1993, 268(28): 21416–21424.
[76] Tasseva G, Bai HD, Davidescu M, et al. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology[J]. J Biol Chem, 2013, 288(6): 4158–4173.
[77] Otsuru M, Yu YB, Mizoi J, et al. Mitochondrial phosphatidylethanolamine level modulates cyt c oxidase activity to maintain respiration capacity in Arabidopsis thaliana rosette leaves[J]. Plant Cell Physiol, 2013, 54(10): 1612–1619.
[78] Rockenfeller P, Koska M, Pietrocola F, et al. Phosphatidylethanolamine positively regulates autophagy and longevity[J]. Cell Death Differ, 2015, 22(3): 499–508.
[79] Wilson-Zbinden C, dos Santos AXDS, Stoffel-Studer I, et al. Autophagy competes for a common phosphatidylethanolamine pool with major cellular PE-consuming pathways in Saccharomyces cerevisiae[J]. Genetics, 2015, 199(2): 475–485.
[80] Wagatsuma A, Sakuma K. Mitochondria as a potential regulator of myogenesis[J]. Sci World J, 2013, 2013: 593267.
[81] Leary SC, Battersby BJ, Hansford RG, et al. Interactions between bioenergetics and mitochondrial biogenesis[J]. Biochim Biophys Acta, 1998, 1365(3): 522–530.
[82] Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance[J]. Curr Biol, 2018, 28(4): R170–R185.
[83] Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells[J]. Nature, 2008, 454(7201): 232–235.
[84] Fortini P, Iorio E, Dogliotti E, et al. Coordinated metabolic changes and modulation of autophagy during myogenesis[J]. Front Physiol, 2016, 7: 237.
[85] Sin J, Andres AM, Taylor DJR, et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts[J]. Autophagy, 2016, 12(2): 369–380.
[86] Melser S, Chatelain EH, Lavie J, et al. Rheb regulates mitophagy induced by mitochondrial energetic status[J]. Cell Metab, 2013, 17(5): 719–730.
[87] Thomas HE, Zhang Y, Stefely JA, et al. Mitochondrial complex I activity is required for maximal autophagy[J]. Cell Rep, 2018, 24(9): 2404–2417.
[88] Pereira L, Girardi JP, Bakovic M. Forms, crosstalks, and the role of phospholipid biosynthesis in autophagy[J]. Int J Cell Biol, 2012, 2012: 931956.
[89] Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation[J]. Cell, 2010, 141(4): 656–667.
[90] Cook KL, Soto-Pantoja DR, Abu-Asab M, et al. Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of parkin-associated mitophagy[J]. Cell Biosci, 2014, 4(1): 16.
[91] Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance[J]. Cell Metab, 2008, 7(1): 45–56.
[92] Helmrich SP, Ragland DR, Leung RW, et al. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus[J]. N Engl J Med, 1991, 325(3): 147–152.
[93] Soman VR, Koivisto VA, Deibert D, et al. Increased insulin sensitivity and insulin binding to monocytes after physical training[J]. N Engl J Med, 1979, 301(22): 1200–1204.
[94] Borghouts LB, Keizer HA. Exercise and insulin sensitivity: a review[J]. Int J Sports Med, 2000, 21(1): 1–12.
[95] Langleite TM, Jensen J, Norheim F, et al. Insulin sensitivity, body composition and adipose depots following 12 w combined endurance and strength training in dysglycemic and normoglycemic sedentary men[J]. Arch Physiol Biochem, 2016, 122(4): 167–179.
[96] Goto-Inoue N, Yamada K, Inagaki A, et al. Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet[J]. Sci Rep, 2013, 3: 3267.
[97] Senoo N, Miyoshi N, Goto-Inoue N, et al. PGC-1α-mediated changes in phospholipid profiles of exercise-trained skeletal muscle[J]. J Lipid Res, 2015, 56(12): 2286–2296.
[98] Mitchell TW, Turner N, Hulbert AJ, et al. Exercise alters the profile of phospholipid molecular species in rat skeletal muscle[J]. J Appl Physiol, 2004, 97(5): 1823–1829.
[99] Liang MTC, Meneses P, Glonek T, et al. Effects of exercise training and anabolic steroids on plantaris and soleus phospholipids: a 31P nuclear magnetic resonance study[J]. Int J Biochem, 1993, 25(3): 337–347.
[100] Henriksson J, Reitman JS. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity[J]. Acta Physiol Scand, 1977, 99(1): 91–97.
[101] Heden TD, Neufer PD, Funai K. Looking beyond structure: membrane phospholipids of skeletal muscle mitochondria[J]. Trends Endocrinol Metab, 2016, 27(8): 553–562.
[102] Timmons JA, Atherton PJ, Larsson O, et al. A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease[J]. Nucleic Acids Res, 2018, 46(15): 7772–7792.
[103] Pavlovic Z, Bakovic M. Regulation of phosphatidylethanolamine homeostasis—the critical role of CTP: phosphoethanolamine cytidylyltransferase (Pcyt2)[J]. Int J Mol Sci, 2013, 14(2): 2529–2550.