[1] Kale R. Bringing epilepsy out of the shadows[J]. BMJ, 1997, 315(7099): 2–3. doi:  10.1136/bmj.315.7099.2
[2] Engel Jr J. A practical guide for routine EEG studies in epilepsy[J]. J Clin Neurophysiol, 1984, 1(2): 109–142. doi:  10.1097/00004691-198404000-00001
[3] Adeli H, Ghosh-Dastidar S. Automated EEG-based diagnosis of neurological disorders: inventing the future of neurology[M]. Boca Raton: CRC Press, 2010: 1–423.
[4] Devinsky O. Diagnosis and treatment of temporal lobe epilepsy[J]. Rev Neurol Dis, 2004, 1(1): 2–9.
[5] Engel Jr J. Mesial temporal lobe epilepsy: what have we learned?[J]. Neuroscientist, 2001, 7(4): 340–352. doi:  10.1177/107385840100700410
[6] Srinivasan V, Eswaran C, Sriraam N. Artificial neural network based epileptic detection using time-domain and frequency-domain features[J]. J Med Syst, 2005, 29(6): 647–660. doi:  10.1007/s10916-005-6133-1
[7] Kumar Y, Dewal ML, Anand RS. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine[J]. Neurocomputing, 2014, 133: 271–279. doi:  10.1016/j.neucom.2013.11.009
[8] Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection in EEGs using time-frequency analysis[J]. IEEE Trans Inf Technol Biomed, 2009, 13(5): 703–710. doi:  10.1109/TITB.2009.2017939
[9] Guo L, Rivero D, Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks[J]. J Neurosci Methods, 2010, 193(1): 156–163. doi:  10.1016/j.jneumeth.2010.08.030
[10] Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215–e220.
[11] EPILEPSIAE-Evolving platform for improving living expectation of patients suffering from IctAl events[EB/OL]. [2007-05-01]. http://www.epilepsiae.eu/.
[12] Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment[D]. Cambridge, MA: Massachusetts Institute of Technology, 2009: 1–162.
[13] Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc Roy Soc A: Math, Phys Eng Sci, 1998, 454(1971): 903–995. doi:  10.1098/rspa.1998.0193
[14] Boutana D, Benidir M, Barkat B. On the selection of intrinsic mode function in EMD method: application on heart sound signal[C]//Proceedings of 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies. Rome, Italy: IEEE, 2010: 1–5.
[15] Didiot E, Illina I, Fohr D, et al. A wavelet-based parameterization for speech/music discrimination[J]. Comput Speech Lang, 2010, 24(2): 341–357. doi:  10.1016/j.csl.2009.05.003
[16] Higuchi T. Approach to an irregular time series on the basis of the fractal theory[J]. Phys D: Nonlinear Phenom, 1988, 31(2): 277–283. doi:  10.1016/0167-2789(88)90081-4
[17] Kesić S, Spasić SZ. Application of Higuchi's fractal dimension from basic to clinical neurophysiology: a review[J]. Comput Methods Programs Biomed, 2016, 133: 55–70. doi:  10.1016/j.cmpb.2016.05.014
[18] Petrosian A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns[C]//Proceedings of the Eighth IEEE Symposium on Computer-Based Medical Systems. Lubbock, TX, USA: IEEE, 1995: 212–217.
[19] Peng CK, Buldyrev SV, Havlin S, et al. Mosaic organization of DNA nucleotides[J]. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1994, 49(2): 1685–1689.
[20] Moctezuma LA, Molinas M. EEG-based subjects identification based on biometrics of imagined speech using EMD[M]//Wang SY, Yamamoto V, Su JZ, et al. Brain Informatics. Cham: Springer, 2018: 458–467.
[21] Joachims T. Making large-scale SVM learning practical[M]//Scholkopf B, Christopher J. C. Burges, Alexander J. Smola. Advances in kernel methods: support vector learning. Cambridge: MIT Press, 1999: 169–184.
[22] Cormen TH, Leiserson CE, Rivest RL. Introduction to algorithms[M]. Cambridge: MIT Press, 2001: 415–463.
[23] Moctezuma LA, Molinas M. Subject identification from low-density EEG-recordings of resting-states: a study of feature extraction and classification[C]//Proceedings of 2019 Future of Information and Communication Conference. San Francisco, USA: Springer, 2020: 830–846.
[24] Kodinariya TM, Makwana PR. Review on determining number of Cluster in K-Means Clustering[J]. Int J Adv Res Comput Sci Manag Stud, 2013, 1(6): 90–95.
[25] Wang YH, Yeh CH, Young HWV, et al. On the computational complexity of the empirical mode decomposition algorithm[J]. Phys A: Stat Mech Appl, 2014, 400: 159–167. doi:  10.1016/j.physa.2014.01.020
[26] Abdiansah A, Wardoyo R. Time complexity analysis of support vector machines (SVM) in LibSVM[J]. Int J Comput Appl, 2015, 128(3): 28–34.
[27] Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Phys A: Stat Mech Appl, 2002, 316(1-4): 87–114. doi:  10.1016/S0378-4371(02)01383-3
[28] Gu GF, Zhou WX. Detrending moving average algorithm for multifractals[J]. Phys Rev E, 2010, 82(1): 011136. doi:  10.1103/PhysRevE.82.011136
[29] Gajic D, Djurovic Z, Gligorijevic J, et al. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis[J]. Front Comput Neurosci, 2015, 9: 38.
[30] Chakrabarti S, Swetapadma A, Pattnaik PK. A channel selection method for epileptic EEG signals[M]//Abraham A, Dutta P, Mandal JK, et al. Emerging Technologies in Data Mining and Information Security. Singapore: Springer, 2019: 565–573.
[31] Rafiuddin N, Khan YU, Farooq O. Feature extraction and classification of EEG for automatic seizure detection[C]//Proceedings of 2011 International Conference on Multimedia, Signal Processing and Communication Technologies. Aligarh, India: IEEE, 2011: 184–187.
[32] Khan YU, Rafiuddin N, Farooq O. Automated seizure detection in scalp EEG using multiple wavelet scales[C]//Proceedings of 2012 IEEE International Conference on Signal Processing, Computing and Control. Waknaghat Solan, India: IEEE, 2012: 1–5.
[33] Zabihi M, Kiranyaz S, Rad AB, et al. Analysis of high-dimensional phase space via Poincaré section for patient-specific seizure detection[J]. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(3): 386–398. doi:  10.1109/TNSRE.2015.2505238
[34] Bhattacharyya A, Pachori RB. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform[J]. IEEE Trans Biomed Eng, 2017, 64(9): 2003–2015. doi:  10.1109/TBME.2017.2650259
[35] Solaija MSJ, Saleem S, Khurshid K, et al. Dynamic mode decomposition based epileptic seizure detection from scalp EEG[J]. IEEE Access, 2018, 6: 38683–38692. doi:  10.1109/ACCESS.2018.2853125
[36] Arulsamy A, Shaikh MF. The impact of epilepsy on the manifestation of anxiety disorder[J]. Int J Nutr, Pharmacol, Neurol Dis, 2016, 6(1): 3–11. doi:  10.4103/2231-0738.173783