[1] Anderson RB, Enomoto H, Bornstein JC, et al. The enteric nervous system is not essential for the propulsion of gut contents in fetal mice[J]. Gut, 2004, 53(10): 1546–1547.
[2] Burns AJ, Roberts RR, Bornstein JC, et al. Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages[J]. Semin Pediatr Surg, 2009, 18(4): 196–205. doi:  10.1053/j.sempedsurg.2009.07.001
[3] Ramirez A, Wong WW, Shulman RJ. Factors regulating gastric emptying in preterm infants[J]. J Pediatr, 2006, 149(4): 475–479. doi:  10.1016/j.jpeds.2006.05.028
[4] Riezzo G, Indrio F, Montagna O, et al. Gastric electrical activity and gastric emptying in term and preterm newborns[J]. Neurogastroenterol Motil, 2000, 12(3): 223–229. doi:  10.1046/j.1365-2982.2000.00203.x
[5] Kasirer MY, Welsh C, Pan JY, et al. Metoclopramide does not increase gastric muscle contractility in newborn rats[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(5): G439–G444. doi:  10.1152/ajpgi.00242.2013
[6] Sobchak C, Fajardo AF, Shifrin Y, et al. Gastric and pyloric sphincter muscle function and the developmental-dependent regulation of gastric content emptying in the rat[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(11): G1169–G1175. doi:  10.1152/ajpgi.00046.2016
[7] Camilleri M, Parkman HP, Shafi MA, et al. Clinical guideline: management of gastroparesis[J]. Am J Gastroenterol, 2013, 108(1): 18–37. doi:  10.1038/ajg.2012.373
[8] Ittmann PI, Amarnath R, Berseth CL. Maturation of antroduodenal motor activity in preterm and term infants[J]. Dig Dis Sci, 1992, 37(1): 14–19. doi:  10.1007/BF01308336
[9] Berseth CL, Ittmann PI. Antral and duodenal motor responses to duodenal feeding in preterm and term infants[J]. J Pediatr Gastroenterol Nutr, 1992, 14(2): 182–186. doi:  10.1097/00005176-199202000-00011
[10] Cavell B. Gastric emptying in preterm infants[J]. Acta Paediatr Scand, 1979, 68(5): 725–730. doi:  10.1111/j.1651-2227.1979.tb18446.x
[11] Siegel M. Gastric emptying time in premature and compromised infants[J]. J Pediatr Gastroenterol Nutr, 1983, 2 Suppl 1: S136–S140.
[12] Zitterman J, Ryan JP. Development of gastric antral smooth muscle contractility in newborn rabbits[J]. Am J Physiol, 1990, 258(4): G571–G575.
[13] Paul DA, Ierardi JA, Parkman HP, et al. Developmental changes in gastric fundus smooth muscle contractility and involvement of extracellular calcium in fetal and adult guinea pigs[J]. Pediatr Res, 1994, 36(5): 642–646. doi:  10.1203/00006450-199411000-00019
[14] Hyman PE, Martin MG, Tomomasa T, et al. Development of calcium channels in gastric smooth muscle[J]. Pediatr Res, 1989, 25(6): 600–604. doi:  10.1203/00006450-198906000-00010
[15] Tomomasa T, Yagi H, Kimura S, et al. Developmental changes in agonist-mediated gastric smooth muscle contraction in the rabbit[J]. Pediatr Res, 1989, 26(5): 458–461. doi:  10.1203/00006450-198911000-00019
[16] Hillemeier AC, Bitar KN, Biancani P. Developmental characteristics of the kitten antrum[J]. Gastroenterology, 1991, 101(2): 339–343. doi:  10.1016/0016-5085(91)90009-A
[17] Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II[J]. J Physiol, 2000, 522(2): 177–185. doi:  10.1111/tjp.2000.522.issue-2
[18] Hillemeier AC, Deutsch DE, Bitar KN. Signal transduction pathways associated with contraction during development of the feline gastric antrum[J]. Gastroenterology, 1997, 113(2): 507–513. doi:  10.1053/gast.1997.v113.pm9247470
[19] Hartshorne DJ, Ito M, Erdödi F. Myosin light chain phosphatase: subunit composition, interactions and regulation[J]. J Muscle Res Cell Motil, 1998, 19(4): 325–341. doi:  10.1023/A:1005385302064
[20] Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase[J]. Physiol Rev, 2003, 83(4): 1325–1358. doi:  10.1152/physrev.00023.2003
[21] Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle[J]. Nature, 1994, 372(6503): 231–236. doi:  10.1038/372231a0
[22] de Godoy MAF, Rattan S. Role of rho kinase in the functional and dysfunctional tonic smooth muscles[J]. Trends Pharmacol Sci, 2011, 32(7): 384–393. doi:  10.1016/j.tips.2011.03.005
[23] Kitazawa T, Gaylinn BD, Denney GH, et al. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation[J]. J Biol Chem, 1991, 266(3): 1708–1715.
[24] Murthy KS. Signaling for contraction and relaxation in smooth muscle of the gut[J]. Annu Rev Physiol, 2006, 68: 345–374. doi:  10.1146/annurev.physiol.68.040504.094707
[25] Murthy KS, Makhlouf GM. Interaction of cA-kinase and cG-kinase in mediating relaxation of dispersed smooth muscle cells[J]. Am J Physiol, 1995, 268(1): C171–C180. doi:  10.1152/ajpcell.1995.268.1.C171
[26] Al-Shboul OA, Al-Dwairi AN, Alqudah MA, et al. Gender differences in the regulation of MLC20 phosphorylation and smooth muscle contraction in rat stomach[J]. Biomed Rep, 2018, 8(3): 283–288.
[27] Hillemeier AC. Gastroesophageal reflux: diagnostic and therapeutic approaches[J]. Pediatr Clin North Am, 1996, 43(1): 197–212. doi:  10.1016/S0031-3955(05)70402-8
[28] Sanders KM, Koh SD, Ro S, et al. Regulation of gastrointestinal motility-insights from smooth muscle biology[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(11): 633–645. doi:  10.1038/nrgastro.2012.168
[29] Al-Shboul O. The role of the RhoA/ROCK pathway in gender-dependent differences in gastric smooth muscle contraction[J]. J Physiol Sci, 2016, 66(1): 85–92. doi:  10.1007/s12576-015-0400-9
[30] Al-Shboul O, Mustafa A. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach[J]. Can J Physiol Pharmacol, 2015, 93(6): 405–411. doi:  10.1139/cjpp-2014-0505
[31] Al-Shboul OA, Nazzal MS, Mustafa AG, et al. Estrogen relaxes gastric muscle cells via a nitric oxide- and cyclic guanosine monophosphate-dependent mechanism: a sex-associated differential effect[J]. Exp Ther Med, 2018, 16(3): 1685–1692.
[32] Bhetwal BP, An CL, Fisher SA, et al. Regulation of basal LC20 phosphorylation by MYPT1 and CPI-17 in murine gastric antrum, gastric fundus, and proximal colon smooth muscles[J]. Neurogastroenterol Motil, 2011, 23(10): e425–e436. doi:  10.1111/nmo.2011.23.issue-10
[33] Kureishi Y, Kobayashi S, Amano M, et al. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation[J]. J Biol Chem, 1997, 272(19): 12257–12260. doi:  10.1074/jbc.272.19.12257
[34] Berridge MJ. Smooth muscle cell calcium activation mechanisms[J]. J Physiol, 2008, 586(21): 5047–5061. doi:  10.1113/jphysiol.2008.160440
[35] Dhaese I, Lefebvre RA. Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus[J]. Eur J Pharmacol, 2009, 606(1–3): 180–186. doi:  10.1016/j.ejphar.2009.01.011
[36] Huang JA, Zhou HP, Mahavadi S, et al. Signaling pathways mediating gastrointestinal smooth muscle contraction and MLC20 phosphorylation by motilin receptors[J]. Am J Physiol Gastrointest Liver Physiol, 2005, 288(1): G23–G31. doi:  10.1152/ajpgi.00305.2004
[37] Rattan S, Phillips BR, Maxwell IV PJ. RhoA/Rho-kinase: pathophysiologic and therapeutic implications in gastrointestinal smooth muscle tone and relaxation[J]. Gastroenterology, 2010, 138(1): 13–18.e3. doi:  10.1053/j.gastro.2009.11.016
[38] Bailly K, Ridley AJ, Hall SM, et al. RhoA activation by hypoxia in pulmonary arterial smooth muscle cells is age and site specific[J]. Circ Res, 2004, 94(10): 1383–1391. doi:  10.1161/01.RES.0000128405.83582.2e
[39] Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension[J]. Nature, 1997, 389(6654): 990–994. doi:  10.1038/40187