[1] Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis[J]. Circ Res, 2015, 116(7): 1269–1276.
[2] Park S, Nguyen NB, Pezhouman A, et al. Cardiac fibrosis: potential therapeutic targets[J]. Transl Res, 2019, 209: 121–137.
[3] Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: the fibroblast awakens[J]. Circ Res, 2016, 118(6): 1021–1040.
[4] Yoon S, Kang G, Eom GH. HDAC inhibitors: therapeutic potential in fibrosis-associated human diseases[J]. Int J Mol Sci, 2019, 20(6): 1329.
[5] Leask A. Potential therapeutic targets for cardiac fibrosis: TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation[J]. Circ Res, 2010, 106(11): 1675–1680.
[6] Guo YC, Dorn T, Kühl SJ, et al. The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis[J]. Dev Biol, 2019, 449(1): 1–13.
[7] Haybar H, Khodadi E, Shahrabi S. Wnt/β-catenin in ischemic myocardium: interactions and signaling pathways as a therapeutic target[J]. Heart Fail Rev, 2019, 24(3): 411–419.
[8] Li JF, Swope D, Raess N, et al. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of β-catenin signaling[J]. Mol Cell Biol, 2011, 31(6): 1134–1144.
[9] Cheng SL, Shao JS, Halstead LR, et al. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/β-catenin signaling and aortic fibrosis in diabetic arteriosclerosis[J]. Circ Res, 2010, 107(2): 271–282.
[10] Benham-Pyle BW, Pruitt BL, Nelson WJ. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry[J]. Science, 2015, 348(6238): 1024–1027.
[11] Jiang L, Yin M, Wei XX, et al. Bach1 represses wnt/β-catenin signaling and angiogenesis[J]. Circ Res, 2015, 117(4): 364–375.
[12] Williams H, Mill CAE, Monk BA, et al. Wnt2 and WISP-1/CCN4 induce intimal thickening via promotion of smooth muscle cell migration[J]. Arterioscler Thromb Vasc Biol, 2016, 36(7): 1417–1424.
[13] Wang F, Liu Z, Park SH, et al. Myeloid β-catenin deficiency exacerbates atherosclerosis in low-density lipoprotein receptor-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2018, 38(7): 1468–1478.
[14] Li XX, Hou LL, Cheng ZP, et al. Overexpression of GAS5 inhibits abnormal activation of Wnt/β-catenin signaling pathway in myocardial tissues of rats with coronary artery disease[J]. J Cell Physiol, 2019, 234(7): 11348–11359.
[15] Zhang Y, Zhang L, Fan XX, et al. Captopril attenuates TAC-induced heart failure via inhibiting Wnt3a/β-catenin and Jak2/Stat3 pathways[J]. Biomed Pharmacother, 2019, 113: 108780.
[16] Taiyab A, Holms J, West-Mays JA. β-catenin/Smad3 interaction regulates transforming growth factor-β-induced epithelial to mesenchymal transition in the lens[J]. Int J Mol Sci, 2019, 20(9): 2078.
[17] Lu Y, Zhang TF, Shan S, et al. MiR-124 regulates transforming growth factor-β1 induced differentiation of lung resident mesenchymal stem cells to myofibroblast by repressing Wnt/β-catenin signaling[J]. Dev Biol, 2019, 449(2): 115–121.
[18] Peifer M, McCrea PD, Green KJ, et al. The vertebrate adhesive junction proteins β-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties[J]. J Cell Biol, 1992, 118(3): 681–691.
[19] Lewis JE, Wahl III JK, Sass KM, et al. Cross-talk between adherens junctions and desmosomes depends on plakoglobin[J]. J Cell Biol, 1997, 136(4): 919–934.
[20] Zhou LL, Pradhan-Sundd T, Poddar M, et al. Mice with hepatic loss of the desmosomal protein γ-catenin are prone to cholestatic injury and chemical carcinogenesis[J]. Am J Pathol, 2015, 185(12): 3274–3289.
[21] Huang J, Yuan SX, Wang DX, et al. The role of COX-2 in mediating the effect of PTEN on BMP9 induced osteogenic differentiation in mouse embryonic fibroblasts[J]. Biomaterials, 2014, 35(36): 9649–9659.
[22] Zeng ZF, Wang QY, Yang XM, et al. Qishen granule attenuates cardiac fibrosis by regulating TGF-β /Smad3 and GSK-3β pathway[J]. Phytomedicine, 2019, 62: 152949.
[23] Zhai CG, Xu YY, Tie YY, et al. DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways[J]. J Mol Cell Cardiol, 2018, 114: 243–252.
[24] Guo YJ, Gupte M, Umbarkar P, et al. Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis[J]. J Mol Cell Cardiol, 2017, 110: 109–120.
[25] Gourdie RG, Dimmeler S, Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease[J]. Nat Rev Drug Discov, 2016, 15(9): 620–638.
[26] Gupta S, Li L. The role of Thymosin β4 in angiotensin II-induced cardiomyocytes growth[J]. Expert Opin Biol Ther, 2018, 18(S1): 105–110.
[27] Morales MG, Ábrigo J, Meneses C, et al. The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-β1 induced by AngII in mouse skeletal muscle[J]. Clin Sci (Lond), 2014, 127(4): 251–264.
[28] Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: plakoglobin and the regulation of tumorigenesis and metastasis[J]. Oncotarget, 2017, 8(19): 32270–32291.
[29] Rao TP, Kühl M. An updated overview on Wnt signaling pathways: a prelude for more[J]. Circ Res, 2010, 106(12): 1798–1806.
[30] Francis H, Kennedy L, Alpini G. Dual ablation of β- and γ-catenin: critical regulators of junctions and their functions[J]. Hepatology, 2018, 67(6): 2079–2081.
[31] Zhou JB, Qu JX, Yi XP, et al. Upregulation of γ-catenin compensates for the loss of β-catenin in adult cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2007, 292(1): H270–276.
[32] Zhurinsky J, Shtutman M, Ben-Ze'ev A. Plakoglobin and β-catenin: protein interactions, regulation and biological roles[J]. J Cell Sci, 2000, 113: 3127–3139.
[33] Guo X, Ramirez A, Waddell DS, et al. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling[J]. Genes Dev, 2008, 22(1): 106–120.