• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Automatic seizure detection with different time delays using SDFT and time-domain feature extraction

  • Abstract: Automatic seizure detection is important for fast detection of the seizure because the way that the expert denotes and searches for seizure in the long signal takes time. The most common way to detect seizures automatically is to use an electroencephalogram (EEG). Many studies have used feature extraction that needs time for calculation. In this study, sliding discrete Fourier transform (SDFT) was applied for conversion to a frequency domain without using a window, which was compared with using window for feature selection. SDFT was calculated for each time series sample directly without any delay by using a simple infinite impulse response (IIR) structure. The EEG database of Bonn University was used to test the proposed method, and two cases were defined to examine a two-classifier feedforward neural network and an adaptive network-based fuzzy inference system. Results revealed that the maximum accuracies were 93% without delay and 99.8% with a one-second delay. This delay accrued because the average was taken for the results with a one-second window.

     

/

返回文章
返回